【題目】已知直線AB:y=kx﹣2(k≠0)與反比例函數(shù)的圖象相交于點A和點B(﹣4,2),直線l的解析式為:y=x+b.
(1)求反比例函數(shù)和直線AB的解析式;
(2)若直線l恰好與反比例函數(shù)的圖象僅僅交于一個點,求直線l的解析式;
(3)在(2)的條件下,如圖,若直線l與反比例函數(shù)的圖象交于第四象限的點C,求△ABC的面積.
【答案】(1)反比例函數(shù)的解析式為y=﹣,直線AB的解析式為y=﹣x﹣2(2)y=x±4(3)12
【解析】
(1)利用待定系數(shù)法即可解決問題;(2)把直線l恰好與反比例函數(shù)的圖象僅僅交于一個點,轉(zhuǎn)化為方程組只有一組解即可解決問題;(3)求出A、C的坐標再求出直線AB與y的交點D坐標,可知CD∥x軸,根據(jù)S△ABC=S△CDB+S△ACD計算即可;
(1)解:設(shè)反比例函數(shù)的解析式為:y=(m≠0),
把B(﹣4,2)代入y=,得到m=﹣8,
把B(﹣4,2)代入y=kx﹣2得到:2=﹣4k﹣2,解得k=﹣1,
∴反比例函數(shù)的解析式為y=﹣,直線AB的解析式為y=﹣x﹣2.
(2)由,消去y得到:x2+2bx+16=0,
∵直線l恰好與反比例函數(shù)的圖象僅僅交于一個點,
∴△=0,
∴4b2﹣64=0,
∴b=±4,
∴直線l的解析式為y=x±4.
(3)由題意直線l的解析式為y=x﹣4,
由,解得,
∴C(4,﹣2),
由解得或,
∴B(2,﹣4),
∵直線AB交y軸與D(0,﹣2),連接CD,
∴CD∥x軸,
∴S△ABC=S△CDB+S△ACD=×4×4+×4×2=12.
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD的邊長為4,一個以點A為頂點的45°角繞點A旋轉(zhuǎn),角的兩邊分別與BC、DC的延長線交于點E、F,連接EF,設(shè)CE=a,CF=b.
(1)如圖1,當a=4時,求b的值;
(2)當a=4時,如圖2,求出b的值;
(3)如圖3,請寫出∠EAF繞點A旋轉(zhuǎn)的過程中a、b滿足的關(guān)系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B兩地之間有一座山,汽車原來從A地到B地經(jīng)過C地沿折線A→C→B行駛,現(xiàn)開通隧道后,汽車直接沿直線AB行駛.已知AC=10千米,∠A=30°,∠B=45°.則隧道開通后,汽車從A地到B地比原來少走多少千米?(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(題文)如圖,已知正方形ABCD,點E是BC邊的中點,DE與AC相交于點F,連接BF,下列結(jié)論:①S△ABF=S△ADF;②S△CDF=2S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正確的是( 。
A. ①②③ B. ②③ C. ①④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A、F、E、C在同一直線上,AB∥CD,∠ABE=∠CDF,AF=CE.
(1)從圖中任找兩組全等三角形;
(2)從(1)中任選一組進行證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點O是六邊形ABCDEF的中心,圖中所有的三角形都是等邊三角形,則下列說法正確的是( )
A. △ODE繞點O順時針旋轉(zhuǎn)60°得到△OBC B. △ODE繞點O逆時針旋轉(zhuǎn)120°得到△OAB
C. △ODE繞點F順時針旋轉(zhuǎn)60°得到△OAB D. △ODE繞點C逆時針旋轉(zhuǎn)90°得△OAB
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】經(jīng)測算,某地氣溫與距離地面的高度有如下對應關(guān)系:
0 | 1 | 2 | 3 | 4 | 5 | … | |
26 | 20 | 14 | 8 | -4 | … |
請根據(jù)上表,完成下面的問題.
(1)猜想:距離地面的高度每上升,氣溫就下降______;表中______.
(2)氣溫與高度之間的函數(shù)關(guān)系式是______.
(3)求該地距離地面處的氣溫.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為A(0,a),B(b,a),且a、b滿足(a﹣2)2+|b﹣4|=0,現(xiàn)同時將點A,B分別向下平移2個單位,再向左平移1個單位,分別得到點A,B的對應點C,D,連接AC,BD,AB.
(1)求點C,D的坐標及四邊形ABDC的面積S四邊形ABCD;
(2)在y軸上是否存在一點M,連接MC,MD,使S△MCD=S四邊形ABDC?若存在這樣一點,求出點M的坐標,若不存在,試說明理由;
(3)點P是直線BD上的一個動點,連接PA,PO,當點P在BD上移動時(不與B,D重合),直接寫出∠BAP、∠DOP、∠APO之間滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】抗震救災中,某縣糧食局為了保證庫存糧食的安全,決定將甲、乙兩個倉庫的糧食,全部轉(zhuǎn)移到具有較強抗震功能的A、B兩倉庫.已知甲庫有糧食100噸,乙?guī)煊屑Z食80噸,而A庫的容量為70噸,B庫的容量為110噸.從甲、乙兩庫到A、B兩庫的路程和運費如下表:(表中“元/噸千米”表示每噸糧食運送1千米所需人民幣)
路程(千米) | 運費(元/噸千米) | |||
甲庫 | 乙?guī)?/span> | 甲庫 | 乙?guī)?/span> | |
A庫 | 20 | 15 | 12 | 12 |
B庫 | 25 | 20 | 10 | 8 |
(1)若甲庫運往A庫糧食x噸,請寫出將糧食運往A、B兩庫的總運費y(元)與x(噸)的函數(shù)關(guān)系式;
(2)當甲、乙兩庫各運往A、B兩庫多少噸糧食時,總運費最省,最省的總運費是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com