如圖所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線AE交BC于點E,連接DE.
(1)求證:四邊形ABED是菱形;
(2)若∠ABC=60°,CE=2BE,試判斷△CDE的形狀,并說明理由.

【答案】分析:(1)根據(jù)AB=AD及AE為∠BAD的平分線可得出∠1=∠2,從而證得△BAE≌△DAE,這樣就得出四邊形ABED為平行四邊形,根據(jù)菱形的判定定理即可得出結(jié)論;
(2)過點D作DF∥AE交BC于點F,可得出DF=AE,AD=EF=BE,再由CE=2BE得出DE=EF,從而結(jié)合∠ABC=60°,AB∥DE可判斷出結(jié)論.
解答:(1)證明:如圖,∵AE平分∠BAD,
∴∠1=∠2,
∵AB=AD,AE=AE,
∴△BAE≌△DAE,
∴BE=DE,
∵AD∥BC,
∴∠2=∠3=∠1,
∴AB=BE,
∴AB=BE=DE=AD,
∴四邊形ABED是菱形.

(2)解:△CDE是直角三角形.
如圖,過點D作DF∥AE交BC于點F,
∵AD∥BC,DF∥AE
∴四邊形AEFD是平行四邊形,
∴DF=AE,AD=EF=BE,
∵CE=2BE,
∴BE=EF=FC,
∴DE=EF,
又∵∠ABC=60°,AB∥DE,
∴∠DEF=60°,
∴△DEF是等邊三角形,
∴DF=EF=FC,
∴△CDE是直角三角形.
點評:本題綜合考查了梯形、全等三角形的判定及性質(zhì)、菱形的判定及性質(zhì),難度較大,解答本題需要掌握①有一組鄰邊相等的平行四邊形是菱形,②直角三角形中,斜邊的中線等于斜邊的一半.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知如圖所示,在梯形ABCD中,AD∥BC,AB=AD=DC=8,∠B=60°,連接AC.
(1)求cos∠ACB的值;
(2)若E、F分別是AB、DC的中點,連接EF,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,點M是線段BC上一定點,且MC=8.動點P從C點出發(fā)沿C?D?A?B的路線運動,運動到點B停止.在點P的運動過程中,使△PMC為等腰三角形的點P有
 
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,點M是線段BC上一定點,且MC=8.動點P從C點出發(fā)沿C→D→A→B的路線運動,運動到點B停止.在點P的運動過程中,使△PMC為等腰三角形的點P有幾個?并求出相應(yīng)等腰三角形的腰長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4,DO垂直于AB.則腰長是
 
.若P是梯形的對稱軸L上的點,那么使△PDB為等腰三角形的點有
 
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在梯形ABCD中,AB∥DC,EF是梯形的中位線,AC交EF于G,BD交EF于H,以下說法錯誤的是(  )

查看答案和解析>>

同步練習(xí)冊答案