【題目】在數(shù)軸上有A、B兩點,所表示的數(shù)分別為n,n+6,A點以每秒5個單位長度的速度向右運(yùn)動,同時B點以每秒3個單位長度的速度也向右運(yùn)動,設(shè)運(yùn)動時間為t 秒.
(1)當(dāng)n=1時,求AB的值;
(2)當(dāng)t 為何值時,A、B兩點重合;
(3)在上述運(yùn)動的過程中,若P為線段AB的中點,數(shù)軸上點C所表示的數(shù)為n+10是否存在t 的值,使得線段PC=4,若存在,求t 的值;若不存在,請說明理由.
【答案】(1)|2t﹣6|;(2)當(dāng)t 為3時,A、B兩點重合;(3)存在t的值,使得線段PC=4,此時t的值為或.
【解析】
找出運(yùn)動時間為t秒時,點A、B表示的數(shù).
(1)將n=1代入點A、B表示的數(shù)中,再根據(jù)兩點間的距離公式即可得出結(jié)論;
(2)根據(jù)點A、B重合即可得出關(guān)于t的一元一次方程,解之即可得出結(jié)論;
(3)根據(jù)點A、B表示的數(shù)結(jié)合點P為線段AB的中點即可找出點P表示的數(shù),根據(jù)PC=4即可得出關(guān)于t的一元一次方程,解之即可得出結(jié)論.
解:當(dāng)運(yùn)動時間為t 秒時,點A表示的數(shù)為5t+n,點B表示的數(shù)為3t+n+6.
(1)當(dāng)n=1時,點A表示的數(shù)為5t+1,點B表示的數(shù)為3t+7,
AB=|5t+1﹣(3t+7)|=|2t﹣6|.
故答案為:|2t﹣6|.
(2)根據(jù)題意得:5t+n=3t+n+6,
解得:t=3.
∴當(dāng)t 為3時,A、B兩點重合.
(3)∵P為線段AB的中點,
∴點P表示的數(shù)為(5t+n+3t+n+6)÷2=4t+n+3,
∵PC=4,
∴|4t+n+3﹣n﹣10|=|4t﹣7|=4,
解得:t=或t=.
∴存在t的值,使得線段PC=4,此時t的值為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C,D為矩形的四個頂點,AB=16 cm,BC=6 cm,動點P,Q分別從點A,C同時出發(fā),點P以3 cm/s的速度向點B移動,點Q以2 cm/s的速度向點D移動.當(dāng)點P運(yùn)動到點B停止時,點Q也隨之停止運(yùn)動.問幾秒時點P和點Q的距離是10 cm?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,矩形紙片ABCD的邊長分別為a、b(a<b),點M、N分別為邊AD、BC上兩點(點A、C除外),連接MN.
(1)如圖②,分別沿ME、NF 將MN兩側(cè)紙片折疊,使點A、C分別落在MN上的A′、C′處,直接寫出ME與FN的位置關(guān)系;
(2)如圖③,當(dāng)MN⊥BC 時,仍按(1)中的方式折疊,請求出四邊形A′EBN與四邊形C′FDM 的周長(用含a的代數(shù)式表示),并判斷四邊形A′EBN與四邊形C′FDM周長之間的數(shù)量關(guān)系;
(3)如圖④,若對角線BD與MN交于點O,分別沿BM、DN將MN兩側(cè)紙片折疊,折疊后,點A、C恰好都落在點O處,并且得到的四邊形BNDM是菱形,請你探索a、b之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)小組的10位同學(xué)站成一列做報數(shù)游戲,規(guī)則是:從前面第一位同學(xué)開始,每位同學(xué)依次報自己順序數(shù)的倒數(shù)的2倍加1,第1位同學(xué)報( +1),第2位同學(xué)報( +1),第3位同學(xué)報( +1)…這樣得到的n個數(shù)的積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)寫出△ABC各點的坐標(biāo).A( , )B( , )C( , ).
(2)若把△ABC向上平移1個單位,再向右平移3個單位得△A′B′C′,在圖中畫出△A′B′C′,并寫出A′、B′、C′的坐標(biāo).A′( , )B′( , )C′( , ).
(3)連結(jié)CA′,CB′,則△CA′B′的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于換季,一家服裝店的老板想將某服裝打折銷售,于是她和正在上七年級的兒子商量打折方案,下面是她和兒子商量時的對話情景:
媽媽:“兒子,每件衣服按標(biāo)價的5折出售,可以嗎?”
兒子:“若每件衣服按標(biāo)價的5折出售會虧本30元.”
媽媽:“那每件衣服按標(biāo)價的8折出售呢?”
兒子:“若每件衣服按標(biāo)價的8折出售將會賺60元.”
……
請根據(jù)上面的信息,解決問題:
(1)求這種服裝的標(biāo)價.
(2)若要不虧本,至少打幾折?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD的面積為300cm2 , 長和寬的比為3:2.在此長方形內(nèi)沿著邊的方向能否并排裁出兩個面積均為147cm2的圓(π取3),請通過計算說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名隊員參加射擊訓(xùn)練,成績分別繪制成下列兩個統(tǒng)計圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績(環(huán)) | 中位數(shù)(環(huán)) | 眾數(shù)(環(huán)) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)寫出表格中a,b,c的值;
(2)分別運(yùn)用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊成績,若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊員?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個在平面直角坐標(biāo)系中從原點開始的回形圖,其中回形通道的寬和OA的長都是1.
(1)觀察圖形填寫表格:
點 | 坐標(biāo) | 所在象限或坐標(biāo)軸 |
A | ||
B | ||
C | ||
D | ||
E | ||
F |
(2)在圖上將回形圖繼續(xù)畫下去(至少再畫出4個拐點);
(3)說出回形圖中位于第一象限的拐點的橫坐標(biāo)與縱坐標(biāo)之間的關(guān)系;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com