【題目】南岸區(qū)近年修建和完善了不少道路,其中一段道路兩側(cè)的綠化任務(wù)計(jì)劃由甲、乙、丙、丁四個(gè)人完成.道路兩側(cè)的植樹數(shù)量相同,如果乙、丙、丁同時(shí)開始植樹,丁在道路左側(cè),乙和丙在道路右側(cè),2小時(shí)后,甲加入,在道路左側(cè)與丁一起植樹.這樣恰好能保證道路兩側(cè)的植樹任務(wù)同時(shí)完成.已知甲、乙、丙、丁每小時(shí)能完成的植樹數(shù)量分別為67、810棵.實(shí)際在植樹時(shí),四人一起開始植樹,甲和丁在道路左側(cè)、乙和丙在道路右側(cè),為保證右側(cè)比左側(cè)提前5小時(shí)完成植樹任務(wù),甲中途轉(zhuǎn)到右側(cè)與乙和丙一起按要求完成了任務(wù),左側(cè)剩下的任務(wù)由丁獨(dú)自完成、則在本次植樹任務(wù)中,甲比丁少植樹_____棵.

【答案】90

【解析】

首先可設(shè)道路一側(cè)植樹棵樹為x棵,根據(jù)時(shí)間的等量關(guān)系列出方程求解;實(shí)際在植樹時(shí),可設(shè)甲在左側(cè)植樹的時(shí)長為y,根據(jù)時(shí)間的等量關(guān)系列出方程求解;最后進(jìn)一步求得丁植樹的時(shí)長,從而可求得甲比丁少植樹的棵樹.

解:設(shè)道路一側(cè)植樹棵數(shù)為x棵,則

2+,

解得x180,

實(shí)際在植樹時(shí),設(shè)甲在左側(cè)植樹的時(shí)長為y,則

5,

解得y5

則丁植樹的時(shí)長為15,

所以甲比丁少植樹15×10﹣(155×690(棵).

故答案為:90

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 邊長為的正方形的對角線交于點(diǎn), 將正方形沿直線折疊, 點(diǎn)C落在對角線的點(diǎn)處,折痕于點(diǎn),交于點(diǎn),則的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知為等腰斜邊上的兩點(diǎn),,.則

A.3B.C.4D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,平行四邊形內(nèi)有兩個(gè)全等的正六邊形,若陰影部分的面積記為,平行四邊形的面積記為,的值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AE是⊙O的弦,C是弧AE的中點(diǎn),弦CGAB于點(diǎn)D,交AE于點(diǎn)F,過點(diǎn)C作⊙O的切線,交BA延長線于點(diǎn)P,連接BE

1)求證:PCAE;

2)若sinP,CF5,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大數(shù)學(xué)家歐拉非常推崇觀察能力,他說過,今天已知的許多數(shù)的性質(zhì),大部分是通過觀察發(fā)現(xiàn)的,歷史上許多大家,都是天才的觀察家,化歸就是將面臨的新問題轉(zhuǎn)化為已經(jīng)熟悉的規(guī)范問題的數(shù)學(xué)方法,這是一種具有普遍適用性的數(shù)學(xué)思想方法.如多項(xiàng)式除以多項(xiàng)式可以類比于多位數(shù)的除法進(jìn)行計(jì)算:

請用以上方法解決下列問題:

1)計(jì)算:(x3+2x23x10÷x2);

2)若關(guān)于x的多項(xiàng)式2x4+5x3+ax2+b能被二項(xiàng)式x+2整除,且a,b均為自然數(shù),求滿足以上條件的a,b的值及相應(yīng)的商.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提高學(xué)生身體素質(zhì),某校決定開展足球、籃球、排球、兵乓球等四項(xiàng)課外體育活動(dòng),要求全員參與,并且每名學(xué)生只能選擇其中一項(xiàng).為了解選擇各種體育活動(dòng)項(xiàng)目的學(xué)生人數(shù),該校隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制出如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)統(tǒng)計(jì)圖回答下列問題:

1)直接寫出這次抽樣調(diào)查的學(xué)生人數(shù);

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該學(xué)校總?cè)藬?shù)是1500人,請估計(jì)選擇籃球項(xiàng)目的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校決定加強(qiáng)毛球、籃球、乒乓球、排球、球五項(xiàng)球類運(yùn)動(dòng),每位同學(xué)必須且只能選擇一項(xiàng)球類運(yùn)動(dòng),對該校學(xué)生隨機(jī)抽取進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖:

運(yùn)動(dòng)項(xiàng)目

頻數(shù)(人數(shù))

毛球

30

籃球

乒乓球

36

排球

12

根據(jù)以上圖表信息解答下列問題:

(1)頻數(shù)分布表中的 , ;

(2)在扇形統(tǒng)計(jì)圖中,“排球”所在的扇形的圓心角為 ;

(3)全校有多少名學(xué)生選擇參加乒乓球運(yùn)動(dòng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,以AB為直徑作⊙O,分別交BC,AC于點(diǎn)DE,過點(diǎn)DDFAC于點(diǎn)F

1)求證:DF是⊙O的切線;

2)若∠C60°,⊙O的半徑為2,求由弧DE,線段DF,EF圍成的陰影部分的面積(結(jié)果保留根號(hào)和π

查看答案和解析>>

同步練習(xí)冊答案