【題目】已知:如圖,在□ABCD中,DE、BF分別是∠ADC和∠ABC的角平分線,交AB、CD于點(diǎn)E、F,連接BD、EF.
(1)求證:BD、EF互相平分;
(2)若∠A=600,AE=2EB,AD=4,求四邊形DEBF的周長和面積.
【答案】(1)證明見解析;(2)四邊形DEBF的周長為12 ,面積是4
【解析】分析:(1)證明EF、BD互相平分,只要證DEBF是平行四邊形;利用兩組對邊分別平行來證明.
(2)求四邊形DEBF的周長,求出BE和DE即可.
詳解:(1)∵四邊形ABCD是平行四邊形
∴CD∥AB,CD=AB,AD=BC
∵DE、BF分別是∠ADC和∠ABC的角平分線
∴∠ADE=∠CDE,∠CBF=∠ABF
∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF
∴∠AED=∠ADE,∠CFB=∠CBF
∴AE=AD,CF=CB,∴AE=CF,∴AB-AE=CD-CF 即BE=DF
∵DF∥BE,∴四邊形DEBF是平行四邊形
∵∠A=60°,AE=AD∴△ADE是等邊三角形
∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=2
∴四邊形DEBF的周長=2(BE+DE)=2(4+2)=12
過D點(diǎn)作DG⊥AB于點(diǎn)G,
在Rt△ADG中,AD=4,∠A=60°,
∴DG=ADcos∠A=4×=
∴四邊形DEBF的面積=BE×DG=2×=4
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,四邊形OABC為矩形,A(6,0),C(0,3),點(diǎn)M在邊OA上,且M(4,0),P、Q兩點(diǎn)同時從點(diǎn)M出發(fā),點(diǎn)P沿x軸向右運(yùn)動;點(diǎn)Q沿x軸先向左運(yùn)動至原點(diǎn)O后,再向右運(yùn)動到點(diǎn)M停止,點(diǎn)P隨之停止運(yùn)動.P、Q兩點(diǎn)運(yùn)動的速度分別為每秒1個單位、每秒2個單位.以PQ為一邊向上作正方形PRLQ.設(shè)點(diǎn)P的運(yùn)動時間為t(秒),正方形PRLQ與矩形OABC重疊部分(陰影部分)的面積為S(平方單位).
(1)用含t的代數(shù)式表示點(diǎn)P的坐標(biāo).
(2)分別求當(dāng)t=1,t=3時,線段PQ的長.
(3)求S與t之間的函數(shù)關(guān)系式.
(4)直接寫出L落在第一象限的角平分線上時t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解下面內(nèi)容,并解決問題:
善于思考的小明在學(xué)習(xí)《實(shí)數(shù)》一章后,自己探究出了下面的兩個結(jié)論:
①,,和都是9×4的算術(shù)平方根,
而9×4的算術(shù)平方根只有一個,所以=.
②,,和都是9×16的算術(shù)平方根,
而9×16的算術(shù)平方根只有一個,所以 .
請解決以下問題:
(1)請仿照①幫助小明完成②的填空,并猜想:一般地,當(dāng)a≥0,b≥0時,與、之間的大小關(guān)系是怎樣的?
(2)再舉一個例子,檢驗(yàn)?zāi)悴孪氲慕Y(jié)果是否正確.
(3)運(yùn)用以上結(jié)論,計(jì)算:的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格中的每個小正方形的邊長均為1個單位長度,Rt△ABC的頂點(diǎn)均在格點(diǎn)上,建立平面直角坐標(biāo)系后,點(diǎn)A(4,3),點(diǎn)B(1,1),點(diǎn)C(4,1).
(1)畫出Rt△ABC關(guān)于y軸對稱的Rt△A1B1C1,(點(diǎn)A、B、C的對稱點(diǎn)分別是A1、B1、C1),直接寫出A1的坐標(biāo);
(2)將Rt△ABC向下平移4個單位,得到Rt△A2B2C2(點(diǎn)A、B、C的對應(yīng)點(diǎn)分別是A2、B2、C2),畫出Rt△A2B2C2 ,連接A1C2,直接寫出線段A1C2的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①若a,b互為相反數(shù),則=-1;②若a+b<0,ab>0,則|a+2b|=-a-2b;③若多項(xiàng)式ax3+bx+1的值為5,則多項(xiàng)式-ax3-bx+1的值為-3;④若甲班有50名學(xué)生,平均分是a分,乙班有40名學(xué)生,平均分是b分,則兩班的平均分為分.其中正確的為____(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1為放置在水平桌面上的臺燈的平面示意圖,燈臂AO長為50cm,與水平桌面所形成的夾角∠OAM為75°.由光源O射出的邊緣光線OC,OB與水平桌面所形成的夾角∠OCA,∠OBA分別為90°和30°.(不考慮其他因素,結(jié)果精確到0.1cm. sin75°≈0.97,cos75°≈0.26,≈1.73
(1)求該臺燈照亮水平桌面的寬度BC.
(2)人在此臺燈下看書,將其側(cè)面抽象成如圖2所示的幾何圖形,若書與水平桌面的夾角∠EFC為60°,書的長度EF為24cm,點(diǎn)P為眼睛所在位置,當(dāng)點(diǎn)P在EF 的垂直平分線上,且到EF距離約為34cm(人的正確看書姿勢是眼睛離書距離約1尺≈34cm)時,稱點(diǎn)P為“最佳視點(diǎn)”.請通過計(jì)算說明最佳視點(diǎn)P在不在燈光照射范圍內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我國南宋數(shù)學(xué)家楊輝(約13世紀(jì))所著的《詳解九章算術(shù)》(1261年)一書中,用下圖的三角形解釋二項(xiàng)和的乘方規(guī)律.楊輝在注釋中提到,在他之前北宋數(shù)學(xué)家賈憲(1050年左右)也用過上述方法,因此我們稱這個三角形為“楊輝三角”或“賈憲三角”.楊輝三角兩腰上的數(shù)都是,其余每一個數(shù)為它上方(左右)兩數(shù)的和.事實(shí)上,這個三角形給出了的展開式(按的次數(shù)由大到小的順序)的系數(shù)規(guī)律.例如,此三角形中第三行的個數(shù),恰好對應(yīng)著展開式中的各項(xiàng)系數(shù),第四行的個數(shù),恰好對應(yīng)著展開式中的各項(xiàng)系數(shù),等等.請依據(jù)上面介紹的數(shù)學(xué)知識,解決下列問題:
(1)寫出的展開式;
(2)利用整式的乘法驗(yàn)證你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+3與x軸相交于點(diǎn)B,與y軸相交于點(diǎn)A,點(diǎn)E為線段AB中點(diǎn),∠ABO的平分線BD與y軸相較于點(diǎn)D,點(diǎn)A、C關(guān)于點(diǎn)O對稱.
(1)求線段DE的長;
(2)一個動點(diǎn)P從點(diǎn)D出發(fā),沿適當(dāng)?shù)穆窂竭\(yùn)動到直線BC上的點(diǎn)F,再沿射線CB方向移動2個單位到點(diǎn)G,最后從點(diǎn)G沿適當(dāng)?shù)穆窂竭\(yùn)動到點(diǎn)E處,當(dāng)P的運(yùn)動路徑最短時,求此時點(diǎn)G的坐標(biāo);
(3)將△ADE繞點(diǎn)A順時針方向旋轉(zhuǎn),旋轉(zhuǎn)角度α(0<α≤180°),在旋轉(zhuǎn)過程中DE所在的直線分別與直線BC、直線AC相交于點(diǎn)M、點(diǎn)N,是否存在某一時刻使△CMN為等腰三角形,若存在,請求出CM的長,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生會干部對校學(xué)生會倡導(dǎo)的“助殘”自愿捐款活動進(jìn)行抽樣調(diào)查,得到一組學(xué)生捐款情況的數(shù)據(jù),下圖是根據(jù)這組數(shù)據(jù)繪制的統(tǒng)計(jì)圖,圖中從左到右各長方形高度之比為3:4:5:8:2,又知此次調(diào)查中捐15元和20元的人數(shù)共39人.
(1)他們一共抽查了多少人捐款數(shù)不少于20元的概率是多少?
(2)這組數(shù)據(jù)的眾數(shù)、中位數(shù)各是多少?
(3)若該校共有2310名學(xué)生,請估算全校學(xué)生共捐款多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com