【題目】如圖,△ABC中,DBC的中點,過D點的直線GFACF,交AC的平行線BGG點,DEDF,交AB于點E,連結(jié)EGEF

1)求證:BGCF;

2)請你判斷BE+CFEF的大小關(guān)系,并說明理由.

【答案】(1)詳見解析;(2)BE+CFEF,證明詳見解析

【解析】

1)先利用ASA判定BGDCFD,從而得出BG=CF;

2)利用全等的性質(zhì)可得GD=FD,再有DEGF,從而得到EG=EF,兩邊之和大于第三邊從而得出BE+CFEF

解:(1)∵BGAC,

∴∠DBG=∠DCF

DBC的中點,

BDCD

又∵∠BDG=∠CDF

在△BGD與△CFD中,

∴△BGD≌△CFDASA).

BGCF

2BE+CFEF

∵△BGD≌△CFD,

GDFDBGCF

又∵DEFG,

EGEF(垂直平分線到線段端點的距離相等).

∴在△EBG中,BE+BGEG,

BE+CFEF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖像過點,,與軸交于另一點,且對稱軸是直線.

(1)求該二次函數(shù)的解析式;

(2)若上的一點,作,當(dāng)面積最大時,求的坐標(biāo);

(3)軸上的點,過軸,與拋物線交于,過軸于.當(dāng)以、、為頂點的三角形與、、為頂點的三角形相似時,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點O逆時針旋轉(zhuǎn),使點A恰好落在BC邊上的A1處,則點C的對應(yīng)點C1的坐標(biāo)為( 。

A. (﹣ B. (﹣ C. (﹣ D. (﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BE平分∠ABCAC于點E,作EDEBAB于點D,OBED的外接圓.

(1)求證:AC是⊙O的切線;

(2)已知⊙O的半徑為2.5,BE=4,求BC,AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:用分離系數(shù)法進行整式的加減運算.

我們已經(jīng)學(xué)過整式的加減,而我們可以列豎式進行整式的加減運算,只要將參加運算的整式連同字母進行降冪排列,凡缺項則留出空位或添零,然后讓常數(shù)項對齊(即右對齊)即可.例如,計算(x32x25)﹣(x2x21)時,我們可以用下列豎式計算:

豎式:

x32x2+5)﹣(x2x21)=x3x4

這種方法叫做分離系數(shù)法.用分離系數(shù)法計算:

1)(2x2+4x3+54x+x2);

2)(3y35y26)﹣(y2+3y3).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,OAC上一動點,過點O作直線MNBC,設(shè)MN交∠BCA的平分線于點E,交∠BCA的外角平分線于點F.若點O運動到AC的中點,則∠ACB=_____°時,四邊形AECF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017山東省菏澤市,第20題,7分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象在第一象限交于AB兩點,B點的坐標(biāo)為(3,2),連接OAOB,過BBDy軸,垂足為D,交OAC,若OC=CA

(1)求一次函數(shù)和反比例函數(shù)的表達式;

(2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y1=﹣x2+4x和直線y2=2x.我們規(guī)定:當(dāng)x取任意一個值時,x對應(yīng)的函數(shù)值分別為y1y2,若y1≠y2,取y1y2中較小值為M;若y1=y2,記M=y1=y2①當(dāng)x>2時,M=y2;②當(dāng)x<0時,Mx的增大而增大;③使得M大于4x的值不存在;④若M=2,則x=1.上述結(jié)論正確的是_____(填寫所有正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用對稱性可設(shè)計出美麗的圖案.在邊長為1的方格紙中,有如圖所示的四邊形(頂點都在格點上)

(1)先作出該四邊形關(guān)于直線成軸對稱的圖形,再作出你所作的圖形連同原四邊形繞0點按順時針方向旋轉(zhuǎn)90o后的圖形;

(2)完成上述設(shè)計后,整個圖案的面積等于_________

查看答案和解析>>

同步練習(xí)冊答案