精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在RtABC中,∠C=90°,BE平分∠ABCAC于點E,作EDEBAB于點D,OBED的外接圓.

(1)求證:AC是⊙O的切線;

(2)已知⊙O的半徑為2.5,BE=4,求BC,AD的長.

【答案】(1)證明見解析;(2)BC=,AD=

【解析】

(1)連接OE,由OB=OE知∠OBE=OEB、由BE平分∠ABC知∠OBE=CBE,據此得∠OEB=CBE,從而得出OEBC,進一步即可得證;

(2)證BDE∽△BEC,據此可求得BC的長度,再證AOE∽△ABC,據此可得AD的長.

1)如圖,連接OE,

OB=OE,

∴∠OBE=OEB,

BE平分∠ABC,

∴∠OBE=CBE,

∴∠OEB=CBE,

OEBC,

又∵∠C=90°,

∴∠AEO=90°,即OEAC,

AC為⊙O的切線;

(2)EDBE,

∴∠BED=C=90°,

又∵∠DBE=EBC,

∴△BDE∽△BEC,

,即,

BC=

∵∠AEO=C=90°,A=A,

∴△AOE∽△ABC,

,即,

解得:AD=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,∠MON90°,OB4,點A是直線OM上的一個動點,連結AB,作∠MAB與∠ABN的角平分線AFBF,兩條角平分線所在的直線相交于點F,則點A在運動過程中線段BF的最小值為( 。

A. 4B. C. 8D. 2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是我縣新區(qū)部分小區(qū)位置簡圖.設港澳城為點A,水榭花都為點B,朝陽家園為點C,濱海華庭為點D,陽光家園為點E,盛世嘉苑為點F,設每個小格的單位為1

1)請建立適當的平面直角坐標系,并寫出六個小區(qū)的坐標;

2)依次連接點AC、EB,請求出四邊形ACEB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】時代中學從學生興趣出發(fā),實施體育活動課走班制.為了了解學生最喜歡的一種球類運動,以便合理安排活動場地,在全校至少喜歡一種球類(乒乓球、羽毛球、排球、籃球、足球)運動的1200名學生中,隨機抽取了若干名學生進行調查(每人只能在這五種球類運動中選擇一種).調查結果統計如下:

球類名稱

乒乓球

羽毛球

排球

籃球

足球

人數

42

15

33

解答下列問題:

(1)這次抽樣調查中的樣本是________;

(2)統計表中,________,________;

(3)試估計上述1200名學生中最喜歡乒乓球運動的人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】建設中的大外環(huán)路是我市的一項重點民生工程.某工程公司承建的一段路基工程的施工土方量為120萬立方,原計劃由公司的甲、乙兩個工程隊從公路的兩端同時相向施工150天完成.由于特殊情況需要,公司抽調甲隊外援施工,由乙隊先單獨施工40天后甲隊返回,兩隊又共同施工了110天,這時甲乙兩隊共完成土方量103.2萬立方.

(1)問甲、乙兩隊原計劃平均每天的施工土方量分別為多少萬立方?

(2)在抽調甲隊外援施工的情況下,為了保證150天完成任務,公司為乙隊新購進了一批機械來提高效率,那么乙隊平均每天的施工土方量至少要比原來提高多少萬立方才能保證按時完成任務?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結論的序號是(

A.①③④ B.①②⑤ C.③④⑤ D.①③⑤

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,DBC的中點,過D點的直線GFACF,交AC的平行線BGG點,DEDF,交AB于點E,連結EGEF

1)求證:BGCF;

2)請你判斷BE+CFEF的大小關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下圖是由一些火柴棒搭成的圖案:

(1)擺第①個圖案用 根火柴棒,擺第②個圖案用 根火柴棒,擺第③個圖案用 根火柴棒.

(2)按照這種方式擺下去,擺第n個圖案用多少根火柴棒?

(3)計算一下擺121根火柴棒時,是第幾個圖案?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在⊙O中,點C在優(yōu)弧上,將弧沿BC折疊后剛好經過AB的中點D.若⊙O的半徑為,AB=4,則BC的長是( 。

A. B. C. D.

查看答案和解析>>

同步練習冊答案