【題目】如圖,在平面直角坐標系xOy中,直線y=﹣x+3與x軸交于點C,與直線AD交于點A( , ),點D的坐標為(0,1)
(1)求直線AD的解析式;
(2)直線AD與x軸交于點B,若點E是直線AD上一動點(不與點B重合),當△BOD與△BCE相似時,求點E的坐標.
【答案】
(1)解:設直線AD的解析式為y=kx+b,
將A( , ),D(0,1)代入得: ,
解得: .
故直線AD的解析式為:y= x+1;
(2)∵直線AD與x軸的交點為(﹣2,0),
∴OB=2,
∵點D的坐標為(0,1),
∴OD=1,
∵y=﹣x+3與x軸交于點C(3,0),
∴OC=3,
∴BC=5
∵△BOD與△BEC相似,
∴ 或 ,
∴ = = 或 ,
∴BE=2 ,CE= ,或CE= ,
∵BCEF=BECE,
∴EF=2,CF= =1,
∴E(2,2),或(3, ).
【解析】(1)設直線AD的解析式為y=kx+b,用待定系數(shù)法將A( , ),D(0,1)的坐標代入即可;(2)由直線AD與x軸的交點為(﹣2,0),得到OB=2,由點D的坐標為(0,1),得到OD=1,求得BC=5,根據(jù)相似三角形的性質得到 或 ,代入數(shù)據(jù)即可得到結論.
【考點精析】本題主要考查了確定一次函數(shù)的表達式和相似三角形的性質的相關知識點,需要掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;對應角相等,對應邊成比例的兩個三角形叫做相似三角形才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知AD,AE分別是△ADC和△ABC的高和中線,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.試求:
(1)AD的長;
(2)△ABE的面積;
(3)△ACE和△ABE的周長的差.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當點D在線段BC上,如果∠BAC=90,則∠BCE 度;
(2)設∠BAC=,∠BCE=.
①如圖2,當點D在線段BC上移動,則,之間有怎樣的數(shù)量關系?請說明理由;
②當點D在直線BC上移動,則,之間有怎樣的數(shù)量關系?請直接寫出你的結論,不必說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD是正方形ABCD的對角線,BC=2,邊BC在其所在的直線上平移,將通過平移得到的線段記為PQ,連接PA、QD,并過點Q作QO⊥BD,垂足為O,連接OA、OP.
(1)請直接寫出線段BC在平移過程中,四邊形APQD是什么四邊形?
(2)請判斷OA、OP之間的數(shù)量關系和位置關系,并加以證明;
(3)在平移變換過程中,設y=S△OPB , BP=x(0≤x≤2),求y與x之間的函數(shù)關系式,并求出y的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,AC,BD是對角線.將△DCB繞著點D順時針旋轉45°得到△DGH,HG交AB于點E,連接DE交AC于點F,連接FG.
則下列結論:
①四邊形AEGF是菱形
②△AED≌△GED
③∠DFG=112.5°
④BC+FG=1.5
其中正確的結論是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C為△ABD的外接圓上的一動點(點C不在 上,且不與點B,D重合),∠ACB=∠ABD=45°
(1)求證:BD是該外接圓的直徑;
(2)連結CD,求證: AC=BC+CD;
(3)若△ABC關于直線AB的對稱圖形為△ABM,連接DM,試探究DM2 , AM2 , BM2三者之間滿足的等量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD是正方形,等腰直角△AEF的直角頂點E在直線BC上(不與點B,C重合),F(xiàn)M⊥AD,交射線AD于點M.
(1)當點E在邊BC上,點M在邊AD的延長線上時,如圖①,求證:AB+BE=AM;
(提示:延長MF,交邊BC的延長線于點H.)
(2)當點E在邊CB的延長線上,點M在邊AD上時,如圖②;當點E在邊BC的延長線上,點M在邊AD上時,如圖③.請分別寫出線段AB,BE,AM之間的數(shù)量關系,不需要證明;
(3)在(1),(2)的條件下,若BE=,∠AFM=15°,則AM=.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的兩邊分別與射線CB,DC相交于點E,F(xiàn),且∠EAF=60°.
(1)如圖1,當點E是線段CB的中點時,直接寫出線段AE,EF,AF之間的數(shù)量關系;
(2)如圖2,當點E是線段CB上任意一點時(點E不與B、C重合),求證:BE=CF;
(3)如圖3,當點E在線段CB的延長線上,且∠EAB=15°時,求點F到BC的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD,BC相交于點O,OA=OD,OB=OC.下列結論正確的是( )
A. △AOB≌△DOC B. △ABO≌△DOC C. ∠A=∠C D. ∠B=∠D
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com