【題目】如下圖所示,在△ABC中,∠ACB=90°,AC=BC,BECE于點(diǎn)E,ADCE于點(diǎn)D.DE=6cm,AD=9cm,則BE的長(zhǎng)是(

A. 6cm B. 1.5cm C. 3cm D. 4.5cm

【答案】C

【解析】

本題可通過(guò)全等三角形來(lái)求BE的長(zhǎng).△BEC和△CDA中,已知了一組直角,∠CBE和∠ACD同為∠BCE的余角,AC=BC,可據(jù)此判定兩三角形全等;那么可得出的條件為CE=AD,BE=CD,因此只需求出CD的長(zhǎng)即可.而CD的長(zhǎng)可根據(jù)CEAD的長(zhǎng)和DE的長(zhǎng)得出,由此可得解.

解:∵∠ACB=90°,BE⊥CE,

∴∠BCE+∠ACD=90°,∠BCE+∠CBE=90°;

∴∠ACD=∠CBE,又AC=BC,

∴△ACD≌△CBE;

∴EC=AD,BE=DC;

∵DE=6cm,AD=9cm,則BE的長(zhǎng)是3cm.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù) )與反比例函數(shù) )的圖象交于點(diǎn)

(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)在 軸上是否存在點(diǎn) ,使 為等腰三角形?若存在,求 的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知在△ABC中,∠C=90°,AC=5,AB=13.點(diǎn)D在邊AC上,且點(diǎn)D到邊AB和邊BC的距離相等.

(1)用直尺圓規(guī)作出點(diǎn)D(不寫作法,保留作圖痕跡,在圖上標(biāo)注清楚點(diǎn)D);

(2)求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】母親節(jié)前期,某花店購(gòu)進(jìn)康乃馨和玫瑰兩種鮮花,銷售過(guò)程中發(fā)現(xiàn)康乃馨比玫瑰銷售量大,店主決定將玫瑰每枝降價(jià)1元促銷,降價(jià)后30元可購(gòu)買玫瑰的數(shù)量是原來(lái)購(gòu)買玫瑰數(shù)量的1.5倍,求降價(jià)后每枝玫瑰的售價(jià)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的條件是(

A. B=C,BD=DC B. ADB=ADC,BD=DC

C. B=C,BAD=CAD D. BD=DC,AB=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)習(xí)全等三角形的判定方法以后,我們知道已知兩邊和一角分別相等的兩個(gè)三角形不一定全等,但下列兩種情形還是成立的.

(1)第一情形(如圖1)在△ABC和△DEF中,∠C=F=90°,AC=DF,AB=DE,則根據(jù)__________,得出△ABC≌△DEF;

(2)第二情形(如圖2)在△ABC和△DEF中,∠C=F(C和∠F均為鈍角),AC=DF,AB=DE,求證:△ABC≌△DEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖以正方形ABCDB點(diǎn)為坐標(biāo)原點(diǎn).BC所在直線為x軸,BA所在直線為y軸,建立直角坐標(biāo)系.設(shè)正方形ABCD的邊長(zhǎng)為6,順次連接OA、OBOC、OD的中點(diǎn)A1、B1C1、D1,得到正方形A1B1C1D1,再順次連接OA1、OB1、OC1、OD1的中點(diǎn)得到正方形A2B2C2D2.按以上方法依次得到正方形A1B1C1D1,……AnBnCnDn,(n為不小于1的自然數(shù)),設(shè)An點(diǎn)的坐標(biāo)為(xn,yn),則xn+yn=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB,CD,OE⊥AB,過(guò)點(diǎn)O畫直線MN⊥CD. 若點(diǎn)F是直線MN上任意一點(diǎn)(點(diǎn)O除外),且∠AOC=34°.求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn)再求值:(x+2﹣ )÷( + ),其中x是不等式組 的整數(shù)解.

查看答案和解析>>

同步練習(xí)冊(cè)答案