【題目】已知:如圖,Rt△ABC中,∠BAC=90°,AB=AC,D是BC的中點,AE=BF.若BC=8,則四邊形AFDE的面積是_____.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+4交y軸于點A,并經(jīng)過B(4,4)和C(6,0)兩點,點D的坐標為(4,0),連接AD,AB,BC,點E從點A出發(fā),以每秒 個單位長度的速度沿線段AD向點D運動,到達點D后,以每秒1個單位長度的速度沿射線DC運動,設點E的運動時間為t秒,過點E作AB的垂線EF交直線AB于點F,以線段EF為斜邊向右作等腰直角△EFG.
(1)求拋物線的解析式;
(2)當點G落在第一象限內(nèi)的拋物線上時,求出t的值;
(3)設點E從點A出發(fā)時,點E,F(xiàn),G都與點A重合,點E在運動過程中,當△BCG的面積為4時,直接寫出相應的t值,并直接寫出點G從出發(fā)到此時所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,為了測量出一垂直水平地面的某高大建筑物AB的高度,一測量人員在該建筑物附近C處,測得建筑物頂端A處的仰角大小為45°,隨后沿直線BC向前走了100米后到達D處,在D處測得A處的仰角大小為30°,則建筑物AB的高度約為米. (注:不計測量人員的身高,結(jié)果按四舍五入保留整數(shù),參考數(shù)據(jù): ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,∠ABC=60°,點E、F分別在CD、BC的延長線上,AE∥BD,EF⊥BF,垂足為點F,DF=2.
(1)求證:D是EC中點;
(2)求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑AB=12cm,C為AB延長線上一點,CP與⊙O相切于點P,過點B作弦BD∥CP,連接PD.
(1)求證:點P為 的中點;
(2)若∠C=∠D,求四邊形BCPD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學廣場上有旗桿如圖1所示,在學習解直角三角形以后,數(shù)學興趣小組測量了旗桿的長度.如圖2,在某一時刻,光線與水平面的夾角為72°,旗桿AB的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC為4米,落在斜坡上的影長CD為3米,AB⊥BC,同一時刻,若1米的豎立標桿PQ在斜坡上的影長QR為2米,求旗桿AB的長度.(結(jié)果精確到0.1米.參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,tan72°≈3.08).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)軸上有A,B兩點,AB=18,原點O是線段AB上的一點,OA=2OB.
(1)求出A,B兩點所表示的數(shù);
(2)若點C是線段AO上一點,且滿足 AC=CO+CB,求C點所表示的數(shù);
(3)若點E以3個單位長度/秒的速度從點A沿數(shù)軸向點B方向勻速運動,同時點F以1個單位長度/秒的速度從點B沿數(shù)軸向右勻速運動,并設運動時間為t秒,問t為多少時,E、F兩點重合.并求出此時數(shù)軸上所表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如何求tan75°的值?按下列方法作圖可解決問題.如圖,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延長CB至點M,在射線BM上截取線段BD,使BD=AB,連接AD.連接此圖可求得tan75°的值為( )
A.2-
B.2+
C.1+
D.
-1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某屆世界杯的小組比賽規(guī)則:四個球隊進行單循環(huán)比賽(每兩隊賽一場),勝一場得3分,平一場得1分,負一場得0分.某小組比賽結(jié)束后,甲、乙、丙、丁四隊分別獲得第一、二、三、四名,各隊的總得分恰好是四個連續(xù)奇數(shù),則與乙打平的球隊是( )
A. 甲 B. 甲與丁 C. 丙 D. 丙與丁
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com