【題目】如圖,直線與x軸、y軸分別交于點(diǎn)A,B,另一直線與x軸、y軸分別交于點(diǎn)C,D,兩直線相交于點(diǎn)M.
求點(diǎn)M的坐標(biāo);
連接AD,求△AMD的面積.
【答案】(1)點(diǎn)M的坐標(biāo)(1,2);(2)S△AMD=2.
【解析】
(1)y=-x+3與y=x+1組成方程組,即可求出M的坐標(biāo);
(2)通過一次函數(shù)求出A,B,C,D四點(diǎn)的坐標(biāo),S△AMD=S△AMC-S△ACD就可求出面積.
(1)由,解得,
故點(diǎn)M的坐標(biāo)(1,2);
(2)∵直線y=﹣x+3與x軸、y軸分別交于點(diǎn)A,B,另一直線y=x+1與x軸、y軸分別交于點(diǎn)C,D,
∴A(3,0),B(0,3),C(-1,0),D(0,1),AC=4,
∴S△AMD=S△AMC﹣S△ACD==2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把兩個(gè)含有45°角的大小不同的直角三角板如圖放置,點(diǎn)D在BC上,連接BE,AD,AD的延長線交BE于點(diǎn)F.求證:AF⊥BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】人民商場(chǎng)銷售某種冰箱,每臺(tái)進(jìn)價(jià)為2500元,市場(chǎng)調(diào)研表明:當(dāng)每臺(tái)銷售價(jià)定為2900元時(shí),平均每天能售出8臺(tái);每臺(tái)售價(jià)每降低50元,平均每天能多售出4臺(tái).
設(shè)該種冰箱每臺(tái)的銷售價(jià)降低了x元.
(1)填表:
每天售出的冰箱臺(tái)數(shù)(臺(tái)) | 每臺(tái)冰箱的利潤(元) | |
降價(jià)前 | 8 | |
降價(jià)后 |
(2)若商場(chǎng)要想使這種冰箱的銷售利潤平均每天達(dá)到5000元,則每臺(tái)冰箱的售價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游泳館普通票價(jià)20元/張,暑假為了促銷,新推出兩種優(yōu)惠卡:
①金卡售價(jià)600元/張,每次憑卡不再收費(fèi).
②銀卡售價(jià)150元/張,每次憑卡另收10元.
暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用,不限次數(shù).設(shè)游泳x次時(shí),所需總費(fèi)用為y元.
(1)分別寫出選擇銀卡、普通票消費(fèi)時(shí),y與x之間的函數(shù)關(guān)系式;
(2)在同一坐標(biāo)系中,若三種消費(fèi)方式對(duì)應(yīng)的函數(shù)圖象如圖所示,請(qǐng)求出點(diǎn)A、B、C的坐標(biāo);
(3)請(qǐng)根據(jù)函數(shù)圖象,直接寫出選擇哪種消費(fèi)方式更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,n),B(4﹣n,﹣4)是直線y=kx+b和雙曲線y=的兩個(gè)交點(diǎn).
(1)求兩個(gè)函數(shù)的表達(dá)式;
(2)觀察圖象,直接寫出不等式kx+b﹣≥0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=x2+bx的圖象的對(duì)稱軸是經(jīng)過點(diǎn)(2,0)且平行于y軸的直線,則關(guān)于x的方程x2+bx=5的解為( )
A.x1=0,x2=4
B.x1=1,x2=5
C.x1=1,x2=﹣5
D.x1=﹣1,x2=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,BA⊥y軸于點(diǎn)A,BC⊥x軸于點(diǎn)C,函數(shù)y=﹣(x>0)的圖象分別交BA、BC于點(diǎn)D、E,當(dāng)BD=3AD,且△BDE的面積為18時(shí),則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣2x+4分別交x軸、y軸于點(diǎn)A、B,將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到△A′OB′.
(1)求直線A′B′所對(duì)應(yīng)的函數(shù)表達(dá)式.
(2)若直線A′B′與直線AB相交于點(diǎn)C,求△A′BC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是長方形, ∠A=∠B=∠C=∠D=90°,AB∥CD,AB=CD=4,AD=BC=6,點(diǎn)A的坐標(biāo)為(3,2).動(dòng)點(diǎn)P的運(yùn)動(dòng)速度為每秒a個(gè)單位長度,動(dòng)點(diǎn)Q的運(yùn)動(dòng)速度為每秒b個(gè)單位長度,且.設(shè)運(yùn)動(dòng)時(shí)間為t,動(dòng)點(diǎn)P、Q相遇則停止運(yùn)動(dòng).
(1) 求a,b的值;
(2) 動(dòng)點(diǎn)P,Q同時(shí)從點(diǎn)A出發(fā),點(diǎn)P沿長方形ABCD的邊界逆時(shí)針方向運(yùn)動(dòng),點(diǎn)Q沿長方形ABCD的邊界順時(shí)針方向運(yùn)動(dòng),當(dāng)t為何值時(shí)P、Q兩點(diǎn)相遇?求出相遇時(shí)P、Q所在位置的坐標(biāo);
(3) 動(dòng)點(diǎn)P從點(diǎn)A出發(fā),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)D出發(fā):
①若點(diǎn)P、Q均沿長方形ABCD的邊界順時(shí)針方向運(yùn)動(dòng),t為何值時(shí),P、Q兩點(diǎn)相遇?求出相遇時(shí)P、Q所在位置的坐標(biāo);
②若點(diǎn)P、Q均沿長方形ABCD的邊界逆時(shí)針方向運(yùn)動(dòng),t為何值時(shí),P、Q兩點(diǎn)相遇?求出相遇時(shí)P、Q所在位置的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com