【題目】如圖所示,在中,內(nèi)角與外角的平分線相交于點,,交,連接、,下列結論:①;②;③垂直平分;④.其中正確的是(

A. ①②④B. ①③④C. ②③④D. ①③

【答案】B

【解析】

①根據(jù)角平分線的性質和外角的性質即可得到結論;
②根據(jù)角平分線的性質和三角形的面積公式即可求出結論;
③根據(jù)線段垂直平分線的性質即可得結果;
④根據(jù)角平分線的性質和平行線的性質即可得到結果.

,

AP平分∠BAC,

PAC,AB的距離相等,

,故錯誤.

BE=BCBP平分∠CBE,

BP垂直平分CE(三線合一),

∵∠BAC與∠CBE的平分線相交于點P,可得點P也位于∠BCD的平分線上,

∴∠DCP=FCP,

又∵PGAD,

∴∠FPC=DCP

.

故①③④正確.

故選:B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 中,,為線段上一動點(不與點,重合),連接,作交線段.以下四個結論:

;

②當中點時;

③當;

④當為等腰三角形時

其中正確的結論是_________(把你認為正確結論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在三角形紙片ABC中,∠ACB=90°,BC=3,AB=5,在AC上取一E,以BE為折痕,使AB的一部分與BC重合,ABC延長線上的點D重合,則CE的長度為( )

A. 1 B. C. 2 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,ABACDE分別在BCAC上,ADBE相交于點F

1)如圖1,若∠BAC60°,BDCE,求證:∠1=∠2;

2)如圖2,在(1)的條件下,連接CF,若CFBF,求證:BF2AF

3)如圖3,∠BAC=∠BFD2CFD90°,若SABC2,求SCDF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:如圖1,中,點在邊上,點上,,,延長交于點,,求證:

等腰三角形是一種常見的軸對稱圖形,幾何試題中我們常將一腰所在的三角形沿著等腰三角形的對稱軸進行翻折,從而構造軸對稱圖形.

小明的想法是:將放到中,沿等腰的對稱軸進行翻折,即作(如圖2)

小白的想法是:將放到中,沿等腰的對稱軸進行翻折,即作的延長線于(如圖3)

經(jīng)驗拓展:等邊中,上一點,連接,上一點,,過點的延長線于點,,若,,求的長(用含的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新春佳節(jié),電子鞭炮因其安全、無污染開始走俏.某商店經(jīng)銷一種電子鞭炮,已知這種電子鞭炮的成本價為每盒80元,市場調(diào)查發(fā)現(xiàn),該種電子鞭炮每天的銷售量y(盒)與銷售單價x(元)有如下關系:y=﹣2x+320(80≤x≤160).設這種電子鞭炮每天的銷售利潤為w元.

(1)求wx之間的函數(shù)關系式;

(2)該種電子鞭炮銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?

(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想買得快.那么銷售單價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(8分)如圖,已知O是坐標原點,B、C兩點的坐標分別為(3,-1)、(2,1)。

(1)以O點為位似中心在y軸的左側將OBC放大到兩倍畫出圖形。

(2)寫出B、C兩點的對應點B、C的坐標;

(3)如果OBC內(nèi)部一點M的坐標為(x,y),寫出M的對應點M的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,頂點My軸上的拋物線與直線y=x+1相交于A、B兩點,且點Ax軸上,點B的橫坐標為2,連結AM、BM.

(1)求拋物線的函數(shù)關系式;

(2)判斷△ABM的形狀,并說明理由;

(3)把拋物線與直線y=x的交點稱為拋物線的不動點.若將(1)中拋物線平移,使其頂點為(m,2m),當m滿足什么條件時,平移后的拋物線總有兩個不動點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A為函數(shù)y=(x>0)圖象上一點,連結OA,交函數(shù)y=(x>0)的圖象于點B,點Cx軸上一點,且AO=AC,則△OBC的面積為____

查看答案和解析>>

同步練習冊答案