【題目】如圖,在ΔABC中,AB=AC,BC=12,BAC=120°,AB的垂直平分線交BC邊于點E,AC的垂直平分線交BC邊于點N.

(1)AEN的周長;

(2)判斷ΔAEN的形狀并說明理由.

【答案】1)△AEN周長為12;(2)△AEN為等邊三角形.

【解析】

1)根據(jù)垂直平分線的性質(zhì),結(jié)合已知條件可得AEBE,ANNC之間的關(guān)系,至此不難得到AEN的周長;

2)根據(jù)已知條件AB=AC,∠BAC=120°,先求出∠ABC和∠ACB的度數(shù);由AE=BE,AN=CN,可求出∠BAE=CAN=30°,利用三角形外角定理,即可判斷出AEN的形狀.

1)∵AB的垂直平分線交BC邊于點E,AC的垂直平分線交BC邊于點N,

AE=BEAN=CN,

BC=12,

∴△AEN周長=AE+EN+AN=BE+EN+NC=BC=12;

2)∵AB=AC,∠BAC=120°,

∴∠B=C=30°,

AE=BEAN=CN,

∴∠BAE=CAN=30°,

∴∠EAN=BAC-BAE-CAN=60°;

∵∠AEN=B+BAE=60°,∠ANE=C+CAN=60°,

∴△AEN為等邊三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家需要用鋼管做防盜窗,按設(shè)計要求,其中需要長為 0.8m,2.5m 且粗細(xì)相同的鋼管分別為 100 根,32 根,并要求這些用料不能是焊接而成的.現(xiàn)鋼材市場的這種規(guī)格的鋼管每根為 6m

1)試問一根 6m 長的圓鋼管有哪些裁剪方法呢?請?zhí)顚懴驴眨ㄓ嗔献鲝U).

方法①:當(dāng)只裁剪長為 0.8m 的用料時,最多可剪 根;

方法②:當(dāng)先剪下 1 2.5m 的用料時,余下部分最多能剪 0.8m 長的用料 根;

方法③:當(dāng)先剪下 2 2.5m 的用料時,余下部分最多能剪 0.8m 長的用料 根.

2)分別用(1)中的方法②和方法③各裁剪多少根 6m 長的鋼管,才能剛好得到所需要的相應(yīng)數(shù)量的材料?

3)試探究:除(2)中方案外,在(1)中還有哪兩種方法聯(lián)合,所需要 6m 長的鋼管與(2 中根數(shù)相同?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,杭州某化工廠與AB兩地有公路,鐵路相連.這家工廠從A地購買一批每噸1000元的原料運(yùn)回工廠,制成每噸8000元的產(chǎn)品運(yùn)到B地.已知公路運(yùn)價為1.4/(噸千米),鐵路運(yùn)價為1.1/(噸千米),且這兩次運(yùn)輸共支出公路運(yùn)輸費14000元,鐵路運(yùn)輸費89100元,求:

1)該工廠從A地購買了多少噸原料?制成運(yùn)往B地的產(chǎn)品多少噸?

2)這批產(chǎn)品的銷售款比原料費與運(yùn)輸費的和多多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,點E在⊙O上,∠EAB的平分線交⊙O于點C,過點C作AE的垂線,垂足為D,直線DC與AB的延長線交于點P.

(1)判斷直線PC與⊙O的位置關(guān)系,并說明理由;

(2)若tan∠P=,AD=6,求線段AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是長方形,尺寸如圖所示:

求陰影部分的面積;

,求陰影部分的面積;

,那么有怎樣的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,BAy軸于點A,BCx軸于點C,函數(shù)的圖象分別交BA,BC于點DE當(dāng)AD:BD=1:3的面積為18時,則k的值是__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,OABC的一個頂點與坐標(biāo)原點重合,OA邊落在x軸上,且OA=4OC=2,COA=45°.反比例函數(shù)y=k0,x0)的圖象經(jīng)過點C,與AB交于點D,連接AC,CD

1)試求反比例函數(shù)的解析式;

2)求證:CD平分∠ACB;

3)如圖2,連接OD,在反比例的函數(shù)圖象上是否存在一點P,使得SPOC=SCOD?如果存在,請直接寫出點P的坐標(biāo).如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c的頂點為D1,2,與x軸的一個交點A在點3,0

2,0之間,其部分圖象如下圖,則以下結(jié)論:b24ac<0;a+b+c<0;ca=2;方程ax2+bx+c2=0有兩個相等的實數(shù)根其中正確結(jié)論的個數(shù)為( )

A1個 B2個 C3個 D4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠一周計劃每日生產(chǎn)自行車100,由于工人實行輪休,每日上班人數(shù)不一定相等,實際每日生產(chǎn)量與計劃量相比情況如下表(以計劃量為標(biāo)準(zhǔn),增加的車輛數(shù)記為正數(shù),減少的車輛數(shù)記為負(fù)數(shù)):

(1)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少輛?

(2)本周總的生產(chǎn)量是多少輛?

查看答案和解析>>

同步練習(xí)冊答案