【題目】如圖,CD是線段AB的垂直平分線,則∠CAD= CBD.請(qǐng)說明理由:

:CD是線段AB的垂直平分線,

AC=___ ,_ =BD. .

在△ACD和△BCD中,

. =BC,

AD=_

CD=CD,

∴△ACD__ ___ (_ . __) .

∴∠CAD=CBD (_ __ )

【答案】BC,ADAC,BD,△BCD,邊邊邊,全等三角形對(duì)應(yīng)邊相等.

【解析】

由垂直平分線的性質(zhì)可得AC=BCAD=BD,在△ACD和△BCD中,利用“邊邊邊”判定全等,可得∠CAD=CBD.

解:∵CD是線段AB的垂直平分線,

AC=BCAD=BD

在△ACD和△BCD中,

∴△ACD≌△BCD(邊邊邊)

∴∠CAD=CBD(全等三角形對(duì)應(yīng)角相等)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5BD=4,則以下四個(gè)結(jié)論中: ①△BDE是等邊三角形; AEBC; ③△ADE的周長是9 ④∠ADE=BDC.其中正確的序號(hào)是( 。

A.②③④B.①②④C.①②③D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系中的任意兩點(diǎn)P1(x1,y1),P2(x2,y2),我們把|x1x2|+|y1y2|叫做P1、P2兩點(diǎn)間的直角距離,記作d(P1,P2)

(1) P0(2,3),O為坐標(biāo)原點(diǎn),則d(O,P0) ;

(2)已知O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P(x,y)滿足d(O,P)1,請(qǐng)寫出xy之間滿足的關(guān)系式,并在所給的直角坐標(biāo)系中畫出所有符合條件的點(diǎn)P所組成的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC是⊙O的直徑,點(diǎn)A在⊙O上,ADBC,垂足為D,AB=AE,BE分別交AD,AC于點(diǎn)F,G.

(1)求證:FA=FG;

(2)BD=DO=2,求弧EC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小組做用頻率估計(jì)概率的試驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線統(tǒng)計(jì)圖,則符合這一結(jié)果的試驗(yàn)最有可能的是(  )

A. 石頭、剪刀、布的游戲中,小明隨機(jī)出的是剪刀

B. 一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃

C. 暗箱中有1個(gè)紅球和2個(gè)黃球它們只有顏色上的區(qū)別,從中任取一球是黃球

D. 擲一個(gè)質(zhì)地均勻的正六面體骰子,向上的面點(diǎn)數(shù)是4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C=90°, 點(diǎn)DAB上,且CD=BD.

(1)求證:點(diǎn)DAB的中點(diǎn).

(2)CD為對(duì)稱軸將△ACD翻折至△A'CD,連接BA',若∠DBC=a,求∠CB A'的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為5的正方形ABCD中,以A為一個(gè)頂點(diǎn),另外兩個(gè)頂點(diǎn)在正方形ABCD的邊上,且含邊長為3的所有大小不同的等腰三角形的個(gè)數(shù)為(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)二次函數(shù)滿足以下條件:

①函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)分別為A(1,0),B(x2,y2)(點(diǎn)B在點(diǎn)A的右側(cè));

②對(duì)稱軸是x=3;

③該函數(shù)有最小值是﹣2.

(1)請(qǐng)根據(jù)以上信息求出二次函數(shù)表達(dá)式;

(2)將該函數(shù)圖象xx2的部分圖象向下翻折與原圖象未翻折的部分組成圖象“G”,平行于x軸的直線與圖象“G”相交于點(diǎn)C(x3,y3)、D(x4,y4)、E(x5,y5)(x3x4x5),結(jié)合畫出的函數(shù)圖象求x3+x4+x5的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,活動(dòng)課上,小玥想要利用所學(xué)的數(shù)學(xué)知識(shí)測量某個(gè)建筑地所在山坡AE的高度,她先在山腳下的點(diǎn)E處測得山頂A的仰角是30°,然后,她沿著坡度i=1:1的斜坡按速度20/分步行15分鐘到達(dá)C處,此時(shí),測得點(diǎn)A的俯角是15°.圖中點(diǎn)A、B、E、D、C在同一平面內(nèi),且點(diǎn)D、E、B在同一水平直線上,求出建筑地所在山坡AE的高度AB.(精確到0.1米,參考數(shù)據(jù):≈1.41).

查看答案和解析>>

同步練習(xí)冊(cè)答案