【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成矩形零件,使一邊在BC上,其余兩個(gè)頂點(diǎn)分別在邊AB、AC上.

(1)若這個(gè)矩形是正方形,那么邊長(zhǎng)是多少?

(2)當(dāng)PQ的值為多少時(shí),這個(gè)矩形面積最大,最大面積是多少?

【答案】(1)若這個(gè)矩形是正方形,那么邊長(zhǎng)是48mm(2)2400mm2

【解析】

(1)根據(jù)正方形的性質(zhì)PQBC,根據(jù)相似三角形的性質(zhì)得到比例關(guān)系式,代入數(shù)據(jù)求解即可;

(2)設(shè)PQx根據(jù)比例式得到根據(jù)矩形的面積公式即可得到結(jié)論.

(1)設(shè)邊長(zhǎng)為xmm,

∵矩形為正方形,

PQBC,

∴△APQ∽△ABC,

ADBC,

ADPQ,

解得PQ=48;

答:若這個(gè)矩形是正方形,那么邊長(zhǎng)是48mm;

(2)設(shè)PQ=x

S四邊形PQMN

當(dāng)PQ=60時(shí),S四邊形PQMN的最大值=2400mm2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,B=30°,將ABC繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)n度后,得到DEC,點(diǎn)D剛好落在AB邊上,

(1)求n的值;

(2)若AC=4,求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從熱氣球C處測(cè)得地面A,B兩點(diǎn)的俯角分別為30°,45°,此時(shí)熱氣球C處所在位置到地面上點(diǎn)A的距離為400米.求地面上A,B兩點(diǎn)間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△OAB與△OCD是以點(diǎn)O為位似中心的位似圖形,相似比為1:2,∠OCD=90°,CO=CD,若B(1,0),則點(diǎn)C的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,Rt△ACB中,AC=3,BC=4,有一動(dòng)圓⊙O始終與Rt△ACB的斜邊AB相切于動(dòng)點(diǎn)P,且⊙O始終經(jīng)過(guò)直角頂點(diǎn)C

(1)如圖2,當(dāng)⊙O 運(yùn)動(dòng)至與直角邊AC相切時(shí),求此時(shí)⊙O 的半徑r的長(zhǎng);

(2)試求⊙O 的半徑r的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知經(jīng)過(guò)原點(diǎn)的拋物線軸的另一個(gè)交點(diǎn)為,現(xiàn)將拋物線向右平移個(gè)單位長(zhǎng)度,所得拋物線與軸交于,與原拋物線交于點(diǎn),設(shè)的面積為,則用表示=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,點(diǎn)C在半圓上,過(guò)點(diǎn)C的切線交BA的延長(zhǎng)線于點(diǎn)D,CD=CB,CEAB交半圓于點(diǎn)E.

(1)求∠D的度數(shù);

(2)求證:以點(diǎn)C,O,B,E為頂點(diǎn)的四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)學(xué)習(xí)中,自變量取值范圍及相應(yīng)的函數(shù)值范圍問(wèn)題是大家關(guān)注的重點(diǎn)之一,請(qǐng)解決下面的問(wèn)題.

(1)分別求出當(dāng)2≤x≤4時(shí),三個(gè)函數(shù):y=2x+1,y= ,y=2(x-1)2+1的最大值和最小值.

(2)對(duì)于二次函數(shù)y=2(x-m)2+m-2,當(dāng)2≤x≤4時(shí)有最小值為1,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品的進(jìn)價(jià)為每件50元.當(dāng)售價(jià)為每件70元時(shí),每星期可賣出300件,現(xiàn)需降價(jià)處理,且經(jīng)市場(chǎng)調(diào)查:每降價(jià)1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問(wèn)題:

(1)若設(shè)每件降價(jià)x元、每星期售出商品的利潤(rùn)為y元,請(qǐng)寫出yx的函數(shù)關(guān)系式,并求出自變量x的取值范圍;

(2)當(dāng)降價(jià)多少元時(shí),每星期的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案