【題目】如圖1,Rt△ACB中,AC=3,BC=4,有一動圓⊙O始終與Rt△ACB的斜邊AB相切于動點P,且⊙O始終經(jīng)過直角頂點C

(1)如圖2,當(dāng)⊙O 運動至與直角邊AC相切時,求此時⊙O 的半徑r的長;

(2)試求⊙O 的半徑r的最小值.

【答案】(1)(2)

【解析】

(1)由勾股定理先求出AB的值,根據(jù)切線長定理得出AP=AC,求出BP的長,再利用△ACB∽△OPB對應(yīng)邊成比例得出圓的半徑.

(2)先作出O最大半徑時的圖,結(jié)合三角函數(shù)計算r的值.

(1)連接OP,

RtACB中,AC=3,BC=4,

∴AB===5,

AC,AP都是圓的切線,

∴AP=AC=3,

PB=2,

∵∠ACB=OPB=90°,B=B,

∴△ACB∽△OPB,

,

r= .

(2)如圖,當(dāng)點P與點B重合時,O的半徑最大,此時點OBC的垂直平分線上,

過點OODBC于點D,則BD=BC,

∵AB是切線,

∴∠ABO=90°,

∴∠ABC+OBD=BOD+OBD=90°,

∴∠ABC=BOD,

sinBOD= sinABC===,

OB=,

即半徑的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,把一個直角三角尺ACB繞著30°角的頂點B順時針旋轉(zhuǎn),使得點A與CB的延長線上的點E重合.

1三角尺旋轉(zhuǎn)了

2連接CD,試判斷CBD的形狀;

3BDC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場學(xué)校積極開展陽光體育活動,組織了九年級學(xué)生定點投籃,規(guī)定每人投籃3次.現(xiàn)對九年級(1)班每名學(xué)生投中的次數(shù)進行統(tǒng)計,繪制成如下的兩幅統(tǒng)計圖,根據(jù)圖中提供的信息,回答下列問題.

(1)求出九年級(1)班學(xué)生人數(shù);

(2)補全兩個統(tǒng)計圖;

(3)求出扇形統(tǒng)計圖中3次的圓心角的度數(shù);

(4)若九年級有學(xué)生200人,估計投中次數(shù)在2次以上(包括2次)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的邊BC為直徑的⊙OAC于點D,過點D⊙O的切線交AB于點E.

(1)如圖1,若∠ABC=90°,求證:OE∥AC;

(2)如圖2,已知AB=AC,若sin∠ADE=, tanA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,ECD上一點,連接AEBD,且AEBD交于點F,若EFAF=2:5,求SDEFS四邊形EFBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成矩形零件,使一邊在BC上,其余兩個頂點分別在邊AB、AC上.

(1)若這個矩形是正方形,那么邊長是多少?

(2)當(dāng)PQ的值為多少時,這個矩形面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線上部分點的橫坐標(biāo), 縱坐標(biāo)的對應(yīng)值如下表:

0

1

2

0

4

6

6

4

從上表可知,下列說法正確的是

①拋物線與軸的一個交點為;、趻佄锞與軸的交點為;

③拋物線的對稱軸是:直線;   在對稱軸左側(cè)增大而增大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0).下列結(jié)論:ab<0,b24a,0<a+b+c<2,0<b<1,當(dāng)x>﹣1時,y>0,其中正確結(jié)論的個數(shù)是

A.5個 B.4個 C.3個 D.2個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條拋物線與x軸相交于AB兩點,其頂點P在折線C-D-E上移動,若點C、D、E的坐標(biāo)分別為(-1,4)、(3,4)、(3,1),點B的橫坐標(biāo)的最小值為1,則點A的橫坐標(biāo)的最大值為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案