【題目】在平面直角坐標系中,點A的坐標是(2,1),將點A繞原點O旋轉180°得到點A′,則點A′的坐標是( )
A.(-1,-2)B.(1,-2)C.(-2,-1)D.(2,-1)
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線經過A(3,0),B(0,3)兩點.
(1)求此拋物線的解析式和直線AB的解析式;
(2)如圖①,動點E從O點出發(fā),沿著OA方向以1個單位/秒的速度向終點A勻速運動,同時,動點F從A點出發(fā),沿著AB方向以個單位/秒的速度向終點B勻速運動,當E,F中任意一點到達終點時另一點也隨之停止運動,連接EF,設運動時間為t秒,當t為何值時,△AEF為直角三角形?
(3)如圖②,取一根橡皮筋,兩端點分別固定在A,B處,用鉛筆拉著這根橡皮筋使筆尖P在直線AB上方的拋物線上移動,動點P與A,B兩點構成無數個三角形,在這些三角形中是否存在一個面積最大的三角形?如果存在,求出最大面積,并指出此時點P的坐標;如果不存在,請簡要說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面的對話。
小紅:“售貨員,我要買些梨!
售貨員說:“小紅,你上次買的那種梨賣完了,我們還沒來得及進貨,我建議你這次買些新進的蘋果,價格比梨貴一點,不過這批蘋果的味道挺好喲!”
小紅:“好,這次和上次一樣,也花30元!
對照前后兩次的電腦小票,小紅發(fā)現,每千克蘋果的單價是梨的1.5倍,買的蘋果的重量比梨輕2.5Kg。
試根據上面的對話和小紅的發(fā)現,分別求出蘋果和梨的單價。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E做直線l∥BC.
(1)判斷直線l與⊙O的位置關系,并說明理由;
(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC紙片中,∠C=90°,AC=6,BC=8,點D在邊BC 上運動,以AD為折痕△ABD折疊得到△AB′D,AB′與邊BC交于點E.若∠B′ED=90°,則BD的長是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖 1,二次函數的圖像過點 A (3,0),B (0,4)兩點,動點 P 從 A 出發(fā),在線段 AB 上沿 A → B 的方向以每秒 2 個單位長度的速度運動,過點P作 PD⊥y 于點 D ,交拋物線于點 C .設運動時間為 t (秒).
(1)求二次函數的表達式;
(2)連接 BC ,當t=時,求△BCP的面積;
(3)如圖 2,動點 P 從 A 出發(fā)時,動點 Q 同時從 O 出發(fā),在線段 OA 上沿 O→A 的方向以 1個單位長度的速度運動,當點 P 與 B 重合時,P 、 Q 兩點同時停止運動,連接 DQ 、 PQ ,將△DPQ沿直線 PC 折疊到 △DPE .在運動過程中,設 △DPE 和 △OAB重合部分的面積為 S ,直接寫出 S 與 t 的函數關系式及 t 的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,點E是邊AB上的動點,點F是射線CD上一點,射線ED和射線AF交于點G,且∠AGE=∠DAB.
(1)求線段CD的長;
(2)如果△AEC是以EG為腰的等腰三角形,求線段AE的長;
(3)如果點F在邊CD上(不與點C、D重合),設AE=x,DF=y,求y關于x的函數解析式,并寫出x的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com