(2012•蘭州)如圖所示,小明和小龍做轉(zhuǎn)陀螺游戲,他們同時(shí)分別轉(zhuǎn)動(dòng)一個(gè)陀螺,當(dāng)兩個(gè)陀螺都停下來(lái)時(shí),與桌面相接觸的邊上的數(shù)字都是奇數(shù)的概率是   
【答案】分析:列舉出所有情況,讓桌面相接觸的邊上的數(shù)字都是奇數(shù)的情況數(shù)除以總情況數(shù)即為所求的概率.
解答:解:列表得:
 (4,6) (5,6) (6,6) (7,6) (8,6)(9,6)
 (4,5) (5,5) (6.5) (7,5) (8,5)(9,5)
 (4,4) (5,4) (6,4) (7,4) (8,4) (9,4)
 (4,3) (5,3) (6,3) (7,3) (8,3) (9,3)
 (4,2) (5,2) (6,2) (7,2) (8,2) (9,2)
 (4,1) (5,1) (6,1) (7,1) (8,1) (9,1)
∴一共有36種情況,與桌面相接觸的邊上的數(shù)字都是奇數(shù)的有9種情況,
∴與桌面相接觸的邊上的數(shù)字都是奇數(shù)的概率是
所以答案:
點(diǎn)評(píng):列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•蘭州)如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(-3,0)、(0,4),拋物線y=
2
3
x2+bx+c經(jīng)過(guò)點(diǎn)B,且頂點(diǎn)在直線x=
5
2
上.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)若把△ABO沿x軸向右平移得到△DCE,點(diǎn)A、B、O的對(duì)應(yīng)點(diǎn)分別是D、C、E,當(dāng)四邊形ABCD是菱形時(shí),試判斷點(diǎn)C和點(diǎn)D是否在該拋物線上,并說(shuō)明理由;
(3)在(2)的條件下,連接BD,已知對(duì)稱軸上存在一點(diǎn)P使得△PBD的周長(zhǎng)最小,求出P點(diǎn)的坐標(biāo);
(4)在(2)、(3)的條件下,若點(diǎn)M是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)O、B不重合),過(guò)點(diǎn)M作∥BD交x軸于點(diǎn)N,連接PM、PN,設(shè)OM的長(zhǎng)為t,△PMN的面積為S,求S和t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,S是否存在最大值?若存在,求出最大值和此時(shí)M點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•蘭州)如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長(zhǎng)最小時(shí),則∠AMN+∠ANM的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•蘭州)如圖,兩個(gè)同心圓,大圓半徑為5cm,小圓的半徑為3cm,若大圓的弦AB與小圓相交,則弦AB的取值范圍是
8<AB≤10
8<AB≤10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•蘭州)如圖,M為雙曲線y=
3
x
上的一點(diǎn),過(guò)點(diǎn)M作x軸、y軸的垂線,分別交直線y=-x+m于點(diǎn)D、C兩點(diǎn),若直線y=-x+m與y軸交于點(diǎn)A,與x軸相交于點(diǎn)B,則AD•BC的值為
2
3
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•蘭州)如圖(1),矩形紙片ABCD,把它沿對(duì)角線BD向上折疊,
(1)在圖(2)中用實(shí)線畫出折疊后得到的圖形(要求尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)折疊后重合部分是什么圖形?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案