【題目】如圖,將矩形紙片放入以所在直線為軸,邊上一點為坐標(biāo)原點的平面直角坐標(biāo)系中,連結(jié)。將紙片沿折疊,點恰好落在邊上點處,若,則點的坐標(biāo)為________________。

【答案】,1

【解析】

依據(jù)折疊的性質(zhì)以及勾股定理,即可得出AC'的長,進而得到BC'=1,再根據(jù)勾股定理可得,RtBOC'中,BO2+BC'2=C'O2,列方程求解即可得到BO=,進而得出點C的坐標(biāo).

解:∵矩形紙片ABCD中,AB=5BC=3,且紙片沿折疊,點恰好落在邊上點處,

AD=3,CD=C'D=5

RtADC'中,AC'=

BC'=5-4=1,

設(shè)BO=x,則CO=C'O=3-x,

RtBOC'中,BO2+BC'2=C'O2,

x2+12=3-x2,

解得x=,

∴點的坐標(biāo)為(,1),

故答案為:(,1),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把長方形紙片ABCD沿EF折疊后,使得點D與點B重合,點C落在點C′的位置上.

1)折疊后,DC的對應(yīng)線段是   ,CF的對應(yīng)線段是   

2)若∠155°,求∠2、∠3的度數(shù);

3)若AB6,AD12,求△BCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)醫(yī)學(xué)研究,使用某種抗生素治療心肌炎,人體內(nèi)每毫升血液中的含藥量不少于4微克時,治療有效.如果一患者按規(guī)定劑量服用這種抗生素,服用后每毫升血液中的含藥量(微克)與服用后的時間(小時)之間的函數(shù)關(guān)系如圖所示:

(1)如果上午8時服用該藥物, 時該藥物的濃度達到最大值 微克/毫升;

(2)根據(jù)圖象求出從服用藥物起到藥物濃度最高時yt之間的函數(shù)解析式;

(3)如果上午8時服用該藥物, 時該藥物開始有效,有效時間一共是 小時;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形OAA1的直角邊OAx軸上,點A1在第一象限,且OA1,以點A1為直角頂點,0A1為一直角邊作等腰直角三角形OA1A2,再以點A2為直角頂點,OA2為直角邊作等腰直角三角形OA2A3…依此規(guī)律,則點A2019的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于拋物線.

1)它與x軸交點的坐標(biāo)為 ,與y軸交點的坐標(biāo)為 ,頂點坐標(biāo)為 ;

2)在坐標(biāo)系中利用描點法畫出此拋物線;

x








y








3)利用以上信息解答下列問題:若關(guān)于x的一元二次方程t為實數(shù))在x的范圍內(nèi)有解,則t的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“龜、蟹賽跑趣事:某天,烏龜和螃蟹在同一直線道路上同起點、同方向、同時出發(fā),分別以不同的速度勻速跑500米。當(dāng)螃蟹領(lǐng)先烏龜300米時,螃蟹停下來休息并睡著了,當(dāng)烏龜追上螃蟹的瞬間,螃蟹驚醒了(驚醒時間忽略不計)并立即以原來的速度繼續(xù)跑向終點,并贏得了比賽。在比賽的整個過程中,烏龜和螃蟹的距離(米)與烏龜出發(fā)的時間(分鐘)之間的關(guān)系如圖所示,則螃蟹到達終點時,烏龜距終點的距離是______________米。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,,在中,交于點。

1)如圖1,若,求的長;

2)如圖2,延長線上一點,連接,若,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按指定的方法解下列方程

(1)2x2-5x-4=0(配方法);

(2)3(x-2)+x2-2x=0(因式分解法);

(3)(a2-b2)x2-4abx=a2-b2(a2≠b2)(公式法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形,,從點出發(fā),的速度沿向點運動設(shè)點的運動時間為

(1)________;(的代數(shù)式表示)

(2)當(dāng)為何值時,;

(3)當(dāng)點從點開始運動,同時從點出發(fā),的速度沿向點運動,是否存在這樣的,使得全等?若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案