【題目】對于拋物線.
(1)它與x軸交點的坐標為 ,與y軸交點的坐標為 ,頂點坐標為 ;
(2)在坐標系中利用描點法畫出此拋物線;
x | … | … | |||||
y | … | … |
(3)利用以上信息解答下列問題:若關于x的一元二次方程(t為實數(shù))在<x<的范圍內有解,則t的取值范圍是 .
【答案】(1)它與x軸交點的坐標為(1,0),(3,0),
與y軸交點的坐標為 (0,3) ,
頂點坐標為 (2,-1) ;
(2)
x | … | 0 | 1 | 2 | 3 | 4 | … |
y | … | 3 | 0 | -1 | 0 | 3 | … |
(3)∵關于x的一元二次方程x2-4x+3-t=0(t為實數(shù))在-1<x<的范圍內有解,
∵y=x2-4x+3的頂點坐標為(2,-1),
若x2-4x+3-t=0有解,方程有兩個根,則:b2-4ac=16-4(3-t)≥0,解得:-1≤t
當x=-1,代入x2-4x+3-t=0,t=8,
當x=,代入x2-4x+3-t=0,t=
∵x>-1,∴t<8,
∴t的取值范圍是:-1≤t<8
【解析】
解:(1)它與x軸交點的坐標為,與y軸交點的坐標為,頂點坐標為; ………………………………………3分
(2)列表:
x | … | 0 | 1 | 2 | 3 | 4 | … |
y | … | 3 | 0 | -1 | 0 | 3 | … |
……………………………4分
圖象如圖3所示. ……………………………5分
(3)t的取值范圍是.……………………6分
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O為AC中點,若點D在直線BC上運動,連接OE,則在點D運動過程中,則OE的最小值是為( 。
A.B.0.25C.1D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1) 請畫出△ABC向左平移5個單位長度后得到的△ABC;
(2) 請畫出△ABC關于原點對稱的△ABC;
(3) 在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,函數(shù)y=(m為常數(shù),m>1,x>0)的圖象經過點P(m,1)和Q(1,m),直線PQ與x軸,y軸分別交于C,D兩點,點M(x,y)是該函數(shù)圖象上的一個動點,過點M分別作x軸和y軸的垂線,垂足分別為A,B.
(1)求∠OCD的度數(shù);
(2)當m=3,1<x<3時,存在點M使得△OPM∽△OCP,求此時點M的坐標;
(3)當m=5時,矩形OAMB與△OPQ的重疊部分的面積能否等于4.1?請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程
(1)若方程有兩個相等的實數(shù)根,求m的值,并求出此時方程的根;
(2)是否存在正數(shù)m,使方程的兩個實數(shù)根的平方和等于224.若存在,求出滿足條件的m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形紙片放入以所在直線為軸,邊上一點為坐標原點的平面直角坐標系中,連結。將紙片沿折疊,點恰好落在邊上點處,若,則點的坐標為________________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=x2+bx圖象的對稱軸為直線x=1,若關于x的一元二次方程x2+bx﹣t=0(t為實數(shù))在﹣1≤x≤2的范圍內有解,則t的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,斜邊AB=5,而直角邊BC,AC之長是一元二次方程x2-(2m-1)x+4(m-1)=0的兩根,則m的值是( )
A. 4 B. -1 C. 4或-1 D. -4或1
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com