已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點(diǎn),DF與對(duì)角線AC交于點(diǎn)M,過M作ME⊥CD于點(diǎn)E.
(1)求證:AM=2CM;
(2)若∠1=∠2,,求ME的值.

【答案】分析:(1)先根據(jù)四邊形ABCD是菱形得出BC∥AD,故△CFM∽△ADM,由相似三角形的性質(zhì)可知=,再根據(jù)CF=BC=AD即可得出結(jié)論;
(2))先根據(jù)AB∥DC得出∠1=∠4,再由∠1=∠2可知∠2=∠4.由等腰三角形的性質(zhì)得出CE=CD.再根據(jù)四邊形ABCD是菱形得出∠3=∠4.根據(jù)F為邊BC的中點(diǎn)可知CF=CE,根據(jù)SAS定理得出△CMF≌△CME,故可得出∠CFM=∠CEM=90°.再由∠2=∠3=∠4=30°得出=的值,根據(jù)CD=2CE即可得出結(jié)論.
解答:解:(1)∵四邊形ABCD是菱形.
∴BC∥AD.
∴△CFM∽△ADM.
=,
∵F為邊BC的中點(diǎn),
∴CF=BC=AD,
==
∴AM=2MC;

(2)∵AB∥DC,
∴∠1=∠4.
∵∠1=∠2,
∴∠2=∠4.
∵M(jìn)E⊥CD,
∴CE=CD.
∵四邊形ABCD是菱形,
∴∠3=∠4.
∵F為邊BC的中點(diǎn),
∴CF=BC.
∴CF=CE,
∵在△CMF和△CME中,
,
∴△CMF≌△CME(SAS).
∴∠CFM=∠CEM=90°.
∵∠2=∠3=∠4,
∴∠2=∠3=∠4=30°.
=
∵CD=2CE=2
∴CE=,
∴ME=1.
點(diǎn)評(píng):本題考查的是相似三角形的判定與性質(zhì),涉及到相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、菱形的性質(zhì)及特殊角的三角函數(shù)值,熟知以上知識(shí)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、已知:如圖,在菱形ABCD中,E、F分別是BC、CD的中點(diǎn).
(1)求證:△ABE≌△ADF;

(2)過點(diǎn)C作CG∥EA交AF于H,交AD于G,若∠BAE=25°,∠BCD=130°,求∠AHC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•重慶)已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點(diǎn),DF與對(duì)角線AC交于點(diǎn)M,過M作ME⊥CD于點(diǎn)E,∠1=∠2.
(1)若CE=1,求BC的長(zhǎng);
(2)求證:AM=DF+ME.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在菱形ABCD中,E為BC邊上一點(diǎn),∠AED=∠B.
(1)求證:△ABE∽△DEA;
(2)若AB=4,求AE•DE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•貴陽(yáng))已知:如圖,在菱形ABCD中,F(xiàn)是BC上任意一點(diǎn),連接AF交對(duì)角線BD于點(diǎn)E,連接EC.
(1)求證:AE=EC;
(2)當(dāng)∠ABC=60°,∠CEF=60°時(shí),點(diǎn)F在線段BC上的什么位置?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖,在菱形ABCD中,AE⊥BC于點(diǎn)E,BE=12,sinD=
513

(1)求菱形的邊長(zhǎng);
(2)求菱形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案