【題目】以△ABC的邊AC為直徑的半圓交AB邊于D點,∠A、∠B、∠C所對邊長為a、b、c,且二次函數(shù)y=(a+c)x2-bx+(c-a)頂點在x軸上,a是方程z2+z-20=0的根.
(1)證明:∠ACB=90°;
(2)若設b=2x,弓形面積S弓形AED=S1,陰影面積為S2,求(S2-S1)與x的函數(shù)關系式;
(3)在(2)的條件下,當BD為何值時,(S2-S1)最大?
【答案】(1)證明見解析;(2)S2-S1=-x2+4x;(3)BD=.
【解析】
(1)由拋物線的頂點在軸上,得到 從而可得結(jié)論.
(2)利用a是z2+z-20=0的根,求解的值,再利用S2-S1=S△ABC-(S半圓-S1)-S1=S△ABC-S半圓,從而可得答案,
(3)由(2)的函數(shù)關系式求解()最大時,利用直徑所對的圓周角是直角,得到利用相似三角形的性質(zhì)可得答案.
(1)因為二次函數(shù)y=(a+c)x2-bx+(c-a)的頂點在x軸上,
∴ Δ=0,即:b2-4×(a+c)×(c-a)=0,
∴ c2=a2+b2,
得∠ACB=90°.
(2)∵ z2+z-20=0.
∴ z1=-5,z2=4,
∵ a>0,得a=4.
設b=AC=2x,有S△ABC=AC·BC=4x,S半圓=x2
∴ S2-S1=S△ABC-(S半圓-S1)-S1=S△ABC-S半圓=-x2+4x
(3) S2-S1=-(x-)2+,
∴ 當x=時,(S2-S1)有最大值.
這時,b=,a=4,c=,
如圖,連接
為圓的直徑,
BD=.
當BD為時,(S2-S1)最大.
科目:初中數(shù)學 來源: 題型:
【題目】某公司有甲種原料,乙種原料,計劃用這兩種原料生產(chǎn)、兩種產(chǎn)品共40件.生產(chǎn)每件種產(chǎn)品需甲種原料,乙種原料,可獲利潤900元;生產(chǎn)每件種產(chǎn)品需甲種原料,乙種原料,可獲利潤1100元.設安排生產(chǎn)種產(chǎn)品件(為非負整數(shù)). .
(I)根據(jù)題意,填寫下表:
甲() | 乙() | 件數(shù)(件) | |
(Ⅱ) 安排生產(chǎn)、兩種產(chǎn)品的件數(shù)有幾種方案?試說明理由:
(Ⅲ) 設生產(chǎn)這批40件產(chǎn)品共可獲利潤元,將表示為的函數(shù),并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線l:y=kx和拋物線C:y=ax2+bx+1.
(1)當k=1,b=1時,拋物線C:y=ax2+bx+1的頂點在直線l:y=kx上,求a的值;
(2)若把直線l向上平移k2+1個單位長度得到直線r,則無論非零實數(shù)k取何值,直線r與拋物線C都只有一個交點;
(i)求此拋物線的解析式;
(ii)若P是此拋物線上任一點,過點P作PQ∥y軸且與直線y=2交于點Q,O為原點,
求證:OP=PQ.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在每個邊長都為1的小正方形組成的網(wǎng)格中,點、、均為格點.
(1)線段的長度等于______;
(2)若為線段上的動點,以、為鄰邊的四邊形為平行四邊形,當長度最小時,請你借助網(wǎng)格和無刻度的直尺畫出該平行四邊形,并簡要說明你的作圖方法:__________(不要求證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,O為坐標原點,A(1,1),在x軸上確定點P,使△AOP為等腰三角形,則符合條件的點P的個數(shù)共有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,點是邊上一點(不與點重合),點是延長線上一點,且,連接.
(1)求證:
(2)連接,其中
①當四邊形是菱形時,求線段與線段之間的距離;
②若點是的內(nèi)心,連接,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為的直徑,為上一點,且點不與點重合,點為半徑的中點,過點作交的延長線于點,連接.
(1)求證:點為的中點;
(2)連接,若,請直接寫出的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某電暖科技有限公司準備購進A型(直熱式電暖)和B型(智能電風幕電暖)兩種設備,經(jīng)計算,購進 3 臺A設備和 2 臺B設備需用 6.6 萬元,購進 1 臺A設備和 3 臺B設備需用5. 7 萬元 .
請解答下列問題:
(1)求A、B兩種設備的進價;
(2)該公司計劃用 21 萬元同時購進A、B兩種設備,若A設備以每臺1.5萬元的價格出售,B設備以每臺2萬元的價格出售,且全部售出,請求出所獲利潤W(單位:萬元)與購買A設備的資金m(單位:萬元)之間的函數(shù)關系式;
(3)在(2)的條件下,要求A設備的利潤不低于B設備的利潤,并將(2)中的最大利潤全部用于購買甲(小米筆記本4000元/臺)、乙(華為筆記本6000元/臺)兩種型號的電腦贈給某中學,請求出有幾種購買電腦的方案 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,AB<AD.
(1)利用尺規(guī)作圖作出∠ABC的角平分線BG,交AD于點E,記點A關于BE對稱點為F(要求保留作圖痕跡,不寫作法);
(2)在(1)所作的圖中,若AF=6,AB=5,求BE的長和四邊形ABFE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com