【題目】某商場有一種游戲,規(guī)則是:在一只裝有8個紅球和若干個白球(每個球除顏色外都相同)的不透明的箱子中,隨機摸出1個球,摸到紅球就可獲得一瓶飲料.工作人員統(tǒng)計了參加游戲的人數和獲得飲料的人數(見下表).
(1)計算并完成表格;
參加游戲的人數 | 200 | 300 | 400 | 500 |
獲得飲料的人數 | 39 | 63 | 82 | 99 |
獲得飲料的頻率 |
(2)估計獲得飲料的概率;
(3)請你估計袋中白球的數量.
【答案】(1)0.195,0.21,0.205,0.198;(2)0.2;(3)估計袋中有32個白球.
【解析】
(1)用獲得飲料的人數除以參加游戲的人數即可得;
(2)根據(1)中的頻率進行估計即可;
(3)利用估計的概率和概率公式進行求解即可.
(1)39÷200=0.195,63÷300=0.21,82÷400=0.202,99÷500=0.198,
填表如下:
參加游戲的人數 | 200 | 300 | 400 | 500 |
獲得飲料的人數 | 39 | 63 | 82 | 99 |
獲得飲料的頻率 | 0.195 | 0.21 | 0.205 | 0.198 |
(2)觀察表格可知隨著參加人數的增加,獲得飲料的頻率逐漸穩(wěn)定在0.2附近,
所以估計獲得飲料的概率為0.2;
(3)設袋中有白球x個,
根據題意,得,
解這個方程,得x=32,
經檢驗,x=32是所列方程的解,
答:估計袋中有32個白球.
科目:初中數學 來源: 題型:
【題目】如圖,點A、B分別在射線OM、ON上運動(不與點O重合).
(1)如圖1,若∠MON=90°,∠OBA、∠OAB的平分線交于點C,則∠ACB= °;
(2)如圖2,若∠MON=n°,∠OBA、∠OAB的平分線交于點C,求∠ACB的度數;
(3)如圖2,若∠MON=n°,△AOB的外角∠ABN、∠BAM的平分線交于點D,求∠ACB與∠ADB之間的數量關系,并求出∠ADB的度數;
(4)如圖3,若∠MON=80°,BC是∠ABN的平分線,BC的反向延長線與∠OAB的平分線交于點E.試問:隨著點A、B的運動,∠E的大小會變嗎?如果不會,求∠E的度數;如果會,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知某船于上午8點在A處觀測小島C在北偏東60°方向上.該船以每小時30海里的速度向東航行到B處,此時測得小島C在北偏東30°方向上.船以原速度再繼續(xù)向東航行1.5小時到達小島C的正南方D點.求船從A到D一共走了多少海里?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個不相等的實數根.
其中正確結論的個數是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知點P的坐標為(2a+6,a-3)
(1)當點P的縱坐標為-4,求a的值;
(2)若點P在y軸上,求點P的坐標;
(3)若點P在第四象限,求a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在第九章中我們研究了幾種特殊四邊形,請根據你的研究經驗來自己研究一種特殊四邊形——箏形.
初識定義:兩組鄰邊分別相等的四邊形是箏形.
(1)根據箏形的定義,寫出一種你學過的四邊形滿足箏形的定義的是 .
性質研究:
(2)類比你學過的特殊四邊形的性質,通過觀察、測量、折疊、證明等操作活動,對如圖的箏形ABCD(AB=AD,BC=CD)的性質進行探究,以下判斷正確的有 (填序號).
①AC⊥BD;②AC、BD互相平分;
③AC平分∠BAD和∠BCD;
④∠ABC=∠ADC;⑤∠BAD+∠BCD=180°;
⑥箏形ABCD的面積為AC×BD.
(3)在上面的箏形性質中選擇一個進行證明.
性質應用:
(4)直接利用你發(fā)現的箏形的性質解決下面的問題:
如圖,在箏形ABCD中,AB=BC,AD=CD,點P是對角線BD上一點,過P分別做AD、CD垂線,垂足分別為點M、N.當箏形ABCD滿足條件 時,四邊形PNDM是正方形?請說明理由.
判定方法:
(5)回憶我們學習過的特殊四邊形的判定方法(如四邊相等的四邊形是菱形),用文字語言寫出箏形的一個判定方法(除定義外): .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,為了美化街道,劉大爺準備利用自家墻外的空地種植兩種不同的花卉,墻的最大可用長度是12.5m,墻外可用寬度為3.25m.現有長為21m的籬笆,計劃靠著院墻圍成一個中間有一道隔欄的長方形花圃.
(1)若要圍成總面積為36m2的花圃,邊AB的長應是多少?
(2)花圃的面積能否達到36.75m2?若能,求出邊AB的長;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著夏季的到來,我縣居民的用電量猛增.目前,我縣城市居民用電收費方式有以下兩種:
①普通電價付費方式:全天0.52元/度;
②峰谷電價付費方式:用電高峰時段(早8:00—晚21:00)0.65元/度;
用電低谷時段(晚21:00—早8:00)0.40元/度.
(1)已知小麗家5月份總用電量為280度.
①若其中高峰時段用電量為80度,則小麗家按照哪種方式付電費比較合算?能省多少元?
②若小麗家采用峰谷電價付費方式交電費137元,那么,小麗家高峰時段用電量為多少度?
(2)到6月份付費時,小麗發(fā)現6月份總用電量為320度,用峰谷電價付費方式比普通電價付費方式省了18.4元,那么,6月份小麗家高峰時段用電量為多少度?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com