【題目】如圖1,在正方形ABCD中,點E是邊BC上一點,連接AE,過點E作EM⊥AE,交對角線AC于點M,過點M作MN⊥AB,垂足為N,連接NE.
(1)求證:AE=NE+ME;
(2)如圖2,延長EM至點F,使EF=EA,連接AF,過點F作FH⊥DC,垂足為H.
猜想CH與FH存在的數(shù)量關系,并證明你的結論;
(3)在(2)的條件下,若點G是AF的中點,連接GH.當GH=CH時,直接寫出GH與AC之間存在的數(shù)量關系.
【答案】(1)見解析;(2),見解析;(3)
【解析】
(1)如圖1,過點N作NK⊥NE,交AE于點K.再證明△ANK≌△MNE得到,AK=ME,NK=NE,再根據(jù)正方形的性質(zhì)即可證明;
(2)過點F作FP⊥BC,交BC的延長線于點P.可得∠P=∠PCH=∠CHF=90°,即四邊形PCHF是矩形.再證明△ABE≌△EPF,可得BE=PF,AB=EP.即CP=BE=PF.可以說明矩形PCHF是正方形即可說明理由;
(3)延長FH交AC于點Q,由中位線定理可得出AQ=2GH,由等腰直角三角形的性質(zhì)可得出CQ=GH即可.
(1)證明:如圖1,過點N作NK⊥NE,交AE于點K.
∴∠KNE=90°.
∵MN⊥AB,
∴∠MNA=90°.
∴∠ANK=∠MNE.
∵ME⊥AE,
∴∠AEM=∠ANM=90°.
∴∠NAK=∠NME.
∵四邊形ABCD是正方形,∠ANM=90°.
∴∠MAN=∠NMA=45°.
∴AN=MN.
在△ANK和△MNE中,
,
∴△ANK≌△MNE(ASA).
∴AK=ME,NK=NE.
∴KE=NE.
∴AE=AK+KE=ME+NE.
(2)解:CH=FH,理由如下:
如圖2,過點F作FP⊥BC,交BC的延長線于點P.
∴∠P=90°.
∵∠BAE+∠AEB=∠FEP+∠AEB=90°,
∴∠BAE=∠FEP.
∵四邊形ABCD是正方形,
∴∠B=∠BCD=∠PCD=90°,AB=BC.
∵FH⊥CD,
∴∠FHC=90°.
∴∠P=∠PCH=∠CHF=90°.
∴四邊形PCHF是矩形.
在△ABE和△EPF中,
,
∴△ABE≌△EPF(AAS).
∴BE=PF,AB=EP.
∵AB=BC,
∴EP=BC.
∴CP=BE=PF.
∴矩形PCHF是正方形.
∴FH=CH.
(3)AC=GH,理由如下:
如圖3,延長FH交AC于點Q,
在正方形ABCD中,∠ACD=45°,
∵∠FHC=90°,
∴∠HQC=∠HCQ=45°,
∴CH=HQ,CQ=CH,
∵CH=FH,
∴HQ=FH,
∵G是AF的中點,
∴GH=AQ,
又∵GH=CH,
∴CQ=GH,
∴AC=AQ+CQ=2GH+GH=(2+)GH.
科目:初中數(shù)學 來源: 題型:
【題目】隨著時代的不斷發(fā)展,新穎的網(wǎng)絡購進逐漸融入到人們的生活中,“拼一拼”電商平臺上提供了一種拼團購買方式,當拼團(單數(shù)不超過15單)成功后商家將會讓利一定的額度給予顧客實惠.現(xiàn)在某商家準備出手一種每件成本25元/件的新產(chǎn)品,經(jīng)市場調(diào)研發(fā)現(xiàn),單價y(單位:元)、日銷售量m(單位:件)與拼單數(shù)x(單位:單)之間存在著如表的數(shù)量關系:
拼單數(shù)x(單位:單) | 2 | 4 | 8 | 12 |
單價y(單位:元) | 34.50 | 34.00 | 33.00 | 32.00 |
日銷售量m(單位:件) | 68 | 76 | 92 | 108 |
請根據(jù)以上提供的信息解決下列問題:
(1)請直接寫出單價y和日銷售量m分別與拼單數(shù)x之間的一次函數(shù)關系式;
(2)拼單數(shù)設置為多少單時的日銷售利潤最大,最大的銷售利潤是多少?
(3)在實際銷售過程中,廠家希望能有更多的商品出售,因此對電商每銷售一件商品廠家就給予電商補助a元(a≤2),那么電商在獲得補助之日后日銷售利潤能夠隨單數(shù)x的增大而增大,那么a的取值范圍是什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在平面直角坐標系中,拋物線y=ax2﹣2ax+4(a<0)交x軸于點A、B,與y軸交于點C,AB=6.
(1)如圖1,求拋物線的解析式;
(2)如圖2,點R為第一象限的拋物線上一點,分別連接RB、RC,設△RBC的面積為s,點R的橫坐標為t,求s與t的函數(shù)關系式;
(3)在(2)的條件下,如圖3,點D在x軸的負半軸上,點F在y軸的正半軸上,點E為OB上一點,點P為第一象限內(nèi)一點,連接PD、EF,PD交OC于點G,DG=EF,PD⊥EF,連接PE,∠PEF=2∠PDE,連接PB、PC,過點R作RT⊥OB于點T,交PC于點S,若點P在BT的垂直平分線上,OB﹣TS=,求點R的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,AD與BC相交于點E,AF平分∠BAD,交BC于點F,交CD的延長線于點G.
(1)若∠G=29°,求∠ADC的度數(shù);
(2)若點F是BC的中點,求證:AB=AD+CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為推動“時刻聽黨話 永遠跟黨走”校園主題教育活動,計劃開展四項活動:A:黨史演講比賽,B:黨史手抄報比賽,C:黨史知識競賽,D:紅色歌詠比賽.校團委對學生最喜歡的一項活動進行調(diào)查,隨機抽取了部分學生,并將調(diào)查結果繪制成圖1,圖2兩幅不完整的統(tǒng)計圖.請結合圖中信息解答下列問題:
(1)本次共調(diào)查了 名學生;
(2)將圖1的統(tǒng)計圖補充完整;
(3)已知在被調(diào)查的最喜歡“黨史知識競賽”項目的4個學生中只有1名女生,現(xiàn)從這4名學生中任意抽取2名學生參加該項目比賽,請用畫樹狀圖或列表的方法,求出恰好抽到一名男生一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩個芭蕾舞團演員的身高(單位:cm)如下表:
甲 | 164 | 164 | 165 | 165 | 166 | 166 | 167 | 167 |
乙 | 163 | 163 | 165 | 165 | 166 | 166 | 168 | 168 |
兩組芭蕾舞團演員身高的方差較小的是______.(填“甲”或“乙”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.擲一枚質(zhì)地均勻的正方體骰子,骰子停止轉動后,5點朝上是必然事件
B.審查書稿中有哪些學科性錯誤適合用抽樣調(diào)查法
C.甲乙兩人在相同條件下各射擊10次,他們的成績的平均數(shù)相同,方差分別是=0.4,=0.6,則甲的射擊成績較穩(wěn)定
D.擲兩枚質(zhì)地均勻的硬幣,“兩枚硬幣都是正面朝上”這一事件發(fā)生的概率為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】當白色小正方形個數(shù)按等于1,2,3,…時的某種規(guī)律增加時,由白色小正方形和黑色小正方形組成的圖形分別如圖所示,則第個圖形中白色小正方形和黑色小正方形的個數(shù)總和等于______.(用表示,是正整數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com