【題目】如圖,AB∥CD,AD與BC相交于點(diǎn)E,AF平分∠BAD,交BC于點(diǎn)F,交CD的延長(zhǎng)線于點(diǎn)G.
(1)若∠G=29°,求∠ADC的度數(shù);
(2)若點(diǎn)F是BC的中點(diǎn),求證:AB=AD+CD.
【答案】(1)58°;(2)詳見(jiàn)解析
【解析】
(1)根據(jù)平行和角平分線,可推導(dǎo)出∠ADC=2∠G,從而得出∠ADC的大。
(2)證△ABF≌△GCF,從而得出AB=GC,從而證AB=AD+CD.
證明:(1)∵AB∥CD,∴ ∠BAG=∠G, ∠BAD=∠ADC.
∵AF平分∠BAD,∴∠BAD=2∠BAG=2∠G.
∴∠ADC=∠BAD=2∠G .
∵∠G=29°,∴∠ADC=58°.
(2)∵AF平分∠BAD,∴∠BAG=∠DAG.
∵∠BAG=∠G, ∴∠DAG=∠G.
∴AD=GD.
∵點(diǎn)F是BC的中點(diǎn),∴BF=CF.
在△ABF和△GCF中,
∵
∴△ABF≌△GCF.
∴AB=GC.
∴AB=GD+CD=AD+CD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新型冠狀病毒肺炎疫情發(fā)生后,全社會(huì)的積極參與疫情防控工作下,才有了我們的平安復(fù)學(xué).為了能在復(fù)學(xué)前將一批防疫物資送達(dá)校園,某運(yùn)輸公司組織了甲、乙兩種貨車,已知甲種貨車比乙種貨車每輛車多裝20箱防疫物資,且甲種貨車裝運(yùn)900箱防疫物資所用車輛與乙種貨車裝運(yùn)600箱防疫物資所用的車輛相等,求甲、乙兩種貨車每輛車可裝多少箱防疫物資?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線交軸于,兩點(diǎn),交軸于點(diǎn).直線經(jīng)過(guò)點(diǎn),.
(1)求拋物線的解析式;
(2)過(guò)點(diǎn)的直線交直線于點(diǎn).
①當(dāng)時(shí),過(guò)拋物線上一動(dòng)點(diǎn)(不與點(diǎn),重合),作直線的平行線交直線于點(diǎn),若以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)的橫坐標(biāo);
②連接,當(dāng)直線與直線的夾角等于的倍時(shí),請(qǐng)直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)是反比例函數(shù)圖像上的一個(gè)動(dòng)點(diǎn),連接,若將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,則過(guò)點(diǎn)的反比例函數(shù)解析式為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于、兩點(diǎn),點(diǎn)的坐標(biāo)為.
(1)求點(diǎn)坐標(biāo);
(2)若對(duì)于每一個(gè)給定的的值,它所對(duì)應(yīng)的函數(shù)值都不小于,求的取值范圍.
(3)直線經(jīng)過(guò)點(diǎn).
①求直線和拋物線的解析式;
②設(shè)拋物線與軸的交點(diǎn)為,過(guò)點(diǎn)作直線軸,將拋物線在軸左側(cè)的部分沿直線翻折,拋物線的其余部分保持不變,得到一個(gè)新圖像,請(qǐng)你結(jié)合新圖像回答:
當(dāng)直線與新圖像只有一個(gè)公共點(diǎn)且時(shí),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E是邊BC上一點(diǎn),連接AE,過(guò)點(diǎn)E作EM⊥AE,交對(duì)角線AC于點(diǎn)M,過(guò)點(diǎn)M作MN⊥AB,垂足為N,連接NE.
(1)求證:AE=NE+ME;
(2)如圖2,延長(zhǎng)EM至點(diǎn)F,使EF=EA,連接AF,過(guò)點(diǎn)F作FH⊥DC,垂足為H.
猜想CH與FH存在的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)在(2)的條件下,若點(diǎn)G是AF的中點(diǎn),連接GH.當(dāng)GH=CH時(shí),直接寫出GH與AC之間存在的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y1=ax+b(a,b為常數(shù),且a≠0)與反比例函數(shù)y2=(m為常數(shù),且n≠0)的圖象交于點(diǎn)A(﹣3,1)、B(1,n).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連結(jié)0A、OB,求△AOB的面積;
(3)直接寫出當(dāng)y1<y2<0時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校組織學(xué)生開(kāi)展義務(wù)植樹(shù)活動(dòng),在活動(dòng)結(jié)束后隨機(jī)調(diào)查了40名學(xué)生每人植樹(shù)的棵數(shù),根據(jù)調(diào)查獲取的樣本數(shù)據(jù),制作了條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:
(1)扇形圖中的值是_________;
(2)求隨機(jī)調(diào)查的40名學(xué)生每人植樹(shù)棵數(shù)這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)若本次活動(dòng)九年級(jí)共有300名學(xué)生參加,估計(jì)植樹(shù)超過(guò)6棵(不含6棵)的學(xué)生約有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某開(kāi)發(fā)商原計(jì)劃對(duì)樓盤新房以每平方米4000元的銷售價(jià)對(duì)外銷售.現(xiàn)為了加快資金周轉(zhuǎn),對(duì)銷售價(jià)經(jīng)過(guò)兩次下調(diào)后,決定在開(kāi)盤之日以每平方米3240元的銷售價(jià)進(jìn)行促銷.
(1)求銷售價(jià)平均每次下調(diào)的百分率;
(2)開(kāi)盤之日,開(kāi)發(fā)商又給予以下兩種優(yōu)惠方案以供選擇:方案①一次性送裝修費(fèi)每平方米50元;方案②打9.8折銷售.張先生要購(gòu)買一套100平方米的住房,試問(wèn)哪種方案更優(yōu)惠?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com