【題目】如圖,ABCD中,AEBD于點E,CFBD于點F

1)求證:BF=DE;

2)如果∠ABC=75°, DBC=30°BC=2,求BD的長.

【答案】(1)證明見解析;(2 +1

【解析】

(1)根據(jù)矩形的性質和已知條件證得△ADE≌△CBF,再利用全等三角形的性質即可證明;

(2)先根據(jù)矩形的性質、勾股定理等知識求得AE的長,進而求得DEBD的長.

1)證明:∵ABCD,

ADBCAD=BC.

∴∠ADE=CBF.

AEBD于點E,CFBD于點F

∴∠AED=CFB=90°.

在△ADE和△CBF中,

AED=BFC,ADE=CBF|AD=BC

∴△ADE≌△CBFAAS

DE=BF

2)解:∵∠ABC=75°,∠DBC=30°,

∴∠ABE=750-30°=45.

ABCD,

∴∠ABE=BDC=45°,

AD=BC=2, ADE=CBF=30°,

∴在RtADE中,AE=1,DE==

RtAEB中,∠ABE=BAE=45°

AE=BE=1.BD= +1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平行四邊形ABCD中,分別以AB、AD為邊作等邊△ABE和等邊△ADF,分別連接CE,CF和EF,則下列結論,一定成立的個數(shù)是( 。

①△CDF≌△EBC;

②△CEF是等邊三角形;

③∠CDF=∠EAF;

④CE∥DF

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解學生對垃圾分類知識的了解程度,某學校對本校學生進行抽樣調查,并繪制統(tǒng)計圖,其中統(tǒng)計圖中沒有標注相應人數(shù)的百分比.請根據(jù)統(tǒng)計圖回答下列問題:

1非常了解的人數(shù)的百分比.

2已知該校共有1200名學生,請估計對垃圾分類知識達到非常了解比較了解程度的學生共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,A(-2,1),B(-4,-2),C(-1,-3),△A′B′C′是△ABC平移之后得到的圖象,并且C的對應點C′的坐標為(4,1)

(1)A′B′兩點的坐標分別為A′______,B′______

(2)作出△ABC平移之后的圖形△A′B′C′;

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】黨的十八大提出,倡導富強、民主、文明、和諧,倡導自由、平等、公正、法治,倡導愛國、敬業(yè)、誠信、友善,積極培育和踐行社會主義核心價值觀,24個字是社會主義核心價值觀的基本內容其中:

富強、民主、文明、和諧國家層面的價值目標;

自由、平等、公正、法治社會層面的價值取向;

愛國、敬業(yè)、誠信、友善公民個人層面的價值準則

小光同學將其中的文明、和諧自由、平等的文字分別貼在4張硬紙板上,制成如右圖所示的卡片將這4張卡片背面朝上洗勻后放在桌子上,從中隨機抽取一張卡片,不放回,再隨機抽取一張卡片

1小光第一次抽取的卡片上的文字是國家層面價值目標的概率是 ;

2請你用列表法或畫樹狀圖法,幫助小光求出兩次抽取卡片上的文字一次是國家層面價值目標、一次

社會層面價值取向的概率卡片名稱可用字母表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,AD=10

1ECD上的點,將△ADE沿折痕AE折疊,使點D落在BC邊上點F處.求DE的長;

2)點P是線段CB延長線上的點,連接PA,若△PAF是等腰三角形,求PB的長;

3MAD上的動點,在DC上存在點N,使△MDN沿折痕MN折疊,點D落在BC邊上點T處,請直接寫出線段CT長度的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的一元二次方程ax2+bx10a≠0)有一根為x2019,則一元二次方程ax12+bx1)=1必有一根為(  )

A.B.2020C.2019D.2018

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是正三角形ABC內的一點,且PA=6,PB=8,PC=10,若將PAC繞點A逆時針旋轉后得到P′AB.

(1)求點P與點P′之間的距離;

(2)求∠APB的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在由6個大小相同的小正方形組成的方格中,設每個小正方形的邊長均為1.

1)如圖①,,,是三個格點(即小正方形的頂點),判斷的位置關系,并說明理由;

2)如圖②,連接三格和兩格的對角線,求的度數(shù)(要求:畫出示意圖,并寫出證明過程).

查看答案和解析>>

同步練習冊答案