已知一個二次函數(shù)的圖象經(jīng)過A(-1,0)、B(0,3)、C(4,-5)三點.
(1)求這個二次函數(shù)的解析式及其圖象的頂點D的坐標;
(2)這個函數(shù)的圖象與x軸有兩個交點,除點A外的另一個交點設(shè)為E,點O為坐標原點.在△AOB、△BOE、△ABE和△BDE著四個三角形中,是否有相似三角形?如果有,指出哪幾對三角形相似,并加以證明;如果沒有,要說明理由.
【答案】分析:(1)使用代入法可求解二次函數(shù)的解析式.
(2)在坐標軸上每一點的坐標都是已知,則可根據(jù)兩點間的距離公式求得每一線段的長,若在兩三角形中,三邊對應(yīng)成比例,而這兩三角形相似,可推得△AOB∽△DBE.
解答:解:(1)設(shè)二次函數(shù)的解析式為y=ax2+bx+c(a≠0).
根據(jù)題意,得
解得a=-1,b=2,c=3.
∴二次函數(shù)的解析式為y=-x2+2x+3.
由y=-x2+2x+3=-(x-1)2+4,
得頂點D的坐標為(1,4)
答:頂點D的坐標為(1,4);

(2)在直角坐標平面內(nèi)畫出圖形.
△AOB∽△DBE,
∵OA=1,OB=3,AB=,BD=,BE=3,DE=
===
∴△AOB∽△DBE.
點評:用待定系數(shù)法求函數(shù)的解析式時要靈活地根據(jù)已知條件選擇配方法和公式法.本題是一道難度較大的二次函數(shù)題,綜合考查了三角形相似的判定定理.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知一個二次函數(shù)的圖象經(jīng)過A(-2,
5
2
)、B(0,-
3
2
)和C(1,-2)三點.
(1)求出這個二次函數(shù)的解析式;
(2)通過配方,求函數(shù)的頂點P的坐標;
(3)若函數(shù)的圖象與x軸相交于點E、F,(E在F的左邊),求出E、F兩點的坐標.
(4)作出函數(shù)的圖象并根據(jù)圖象回答:當x取什么時,y>0,y<0,y=0?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知一個二次函數(shù)的圖象經(jīng)過A(0,1)、B(2,3)、C(-1,-
32
)
三點.
(1)求這個二次函數(shù)的解析式;
(2)指出所求函數(shù)圖象的頂點坐標和對稱軸,并畫出其大致圖象.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•黃陂區(qū)模擬)已知一個二次函數(shù)的圖象經(jīng)過A(4,3),B(1,0),C(-1,8)三點,求這個二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•嘉定區(qū)一模)已知一個二次函數(shù)的圖象經(jīng)過A(0,3)、B(4,3)、C(1,0)三點(如圖).
(1)求這個二次函數(shù)的解析式;
(2)求tan∠BAC的值;
(3)若點D在x軸上,點E在(1)中所求出的二次函數(shù)的圖象上,且以點A、C、D、E為頂點的四邊形是平行四邊形,求點D、E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)二次函數(shù)的頂點是(1,2)且過(0,-1)點,求這個二次函數(shù)的解析式.
(2)已知一個二次函數(shù)的圖象經(jīng)過點(1,-1),(0,1),(-1,13),求這個二次函數(shù)的解析式.

查看答案和解析>>

同步練習冊答案