【題目】已知:拋物線y= (x﹣1)2﹣3.
(1)寫出拋物線的開口方向、對稱軸;
(2)函數(shù)y有最大值還是最小值?并求出這個最大(。┲担
(3)設(shè)拋物線與y軸的交點為P,與x軸的交點為Q,求直線PQ的函數(shù)解析式.

【答案】
(1)解:拋物線y= (x﹣1)2﹣3,

∵a= >0,

∴拋物線的開口向上,

對稱軸為直線x=1;


(2)解:∵a= >0,

∴函數(shù)y有最小值,最小值為﹣3;


(3)解:令x=0,則y= (0﹣1)2﹣3=﹣ ,

所以,點P的坐標為(0,﹣ ),

令y=0,則 (x﹣1)2﹣3=0,

解得x1=﹣1,x2=3,

所以,點Q的坐標為(﹣1,0)或(3,0),

當點P(0,﹣ ),Q(﹣1,0)時,設(shè)直線PQ的解析式為y=kx+b(k≠0),

解得 ,

所以直線PQ的解析式為y=﹣ x﹣

當P(0,﹣ ),Q(3,0)時,設(shè)直線PQ的解析式為y=mx+n,

,

解得 ,

所以,直線PQ的解析式為y= x﹣ ,

綜上所述,直線PQ的解析式為y=﹣ x﹣ 或y= x﹣


【解析】(1)根據(jù)二次函數(shù)的性質(zhì),寫出開口方向與對稱軸即可;(2)根據(jù)a是正數(shù)確定有最小值,再根據(jù)函數(shù)解析式寫出最小值;(3)分別求出點P、Q的坐標,再根據(jù)待定系數(shù)法求函數(shù)解析式解答.
【考點精析】通過靈活運用確定一次函數(shù)的表達式和二次函數(shù)的性質(zhì),掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(c2012防城港)某奶品生產(chǎn)企業(yè),2010年對鐵鋅牛奶、酸牛奶、純牛奶三個品種的生產(chǎn)情況進行了統(tǒng)計,繪制了圖1、2的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:
(1)酸牛奶生產(chǎn)了多少萬噸?把圖1補充完整;酸牛奶在圖2所對應(yīng)的圓心角是多少度?
(2)由于市場不斷需求,據(jù)統(tǒng)計,2011年的生產(chǎn)量比2010年增長20%,按照這樣的增長速度,請你估算2012年酸牛奶的生產(chǎn)量是多少萬噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A的坐標為(﹣2,﹣1),點B的坐標為(0,﹣2),若將線段AB平移至A′B′的位置,點A′的坐標為(a,2),點B′的坐標為(1,b),則a+b的值為( 。

A. 0 B. 2 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,AD=4,BC=12,點EBC的中點.點P、Q分別是邊AD、BC上的兩點,其中點P以每秒個1單位長度的速度從點A運動到點D后再返回點A,同時點Q以每秒2個單位長度的速度從點C出發(fā)向點B運動.當其中一點到達終點時停止運動.當運動時間t_____秒時,以點A、P,Q,E為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表反映了x與y之間存在某種函數(shù)關(guān)系,現(xiàn)給出了幾種可能的函數(shù)關(guān)系式: y=x+7,y=x﹣5,y=﹣ ,y= x﹣1

x

﹣6

﹣5

3

4

y

1

1.2

﹣2

﹣1.5


(1)從所給出的幾個式子中選出一個你認為滿足上表要求的函數(shù)表達式:;
(2)請說明你選擇這個函數(shù)表達式的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在日歷上,我們可以發(fā)現(xiàn)其中某些數(shù)滿足一定的規(guī)律,如圖是201712月份的日歷.如圖所選擇的兩組四個數(shù),分別將每組數(shù)中相對的兩數(shù)相乘,再相減,例如:7×9﹣1×15= ,18×20﹣12×26= ,不難發(fā)現(xiàn),結(jié)果都是

1請將上面三個空補充完整;

2)我們發(fā)現(xiàn)選擇其他類似的部分規(guī)律也相同,請你利用整式的運算對以上的規(guī)律加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知∠A=80°,∠B=60°,DE∥BC,那么∠CED的大小是(  )
A.40°
B.60°
C.120°
D.140°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知代數(shù)式(mx2+2mx-1)(xm+3nx+2)化簡以后是一個四次多項式,并且不含二次項,請分別求出m,n的值,并求出一次項系數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+8x軸,y軸分別交于點AB,MOB上的一點,若將△ABM沿AM折疊,點B恰好落在x軸上的點B′處,則直線AM的解析式為  

查看答案和解析>>

同步練習冊答案