如圖,已知AB∥CD,∠AEC=90°,那么∠A與∠C的度數(shù)和為多少度?為什么?
解:∠A與∠C的度數(shù)和為 _________ .
理由:過(guò)點(diǎn)E作EF∥AB,
∵EF∥AB,
∴∠A+∠AEF=180°( _________ ).
∵AB∥CD( _________ ),EF∥AB,
∴EF∥CD( _________ )
∴ _________ (兩直線平行,同旁內(nèi)角互補(bǔ))
∴∠A+∠AEF+∠CEF+∠C= _________ °(等式的性質(zhì))
即∠A+∠AEC+∠C= _________ °
∵∠AEC=90°(已知)
∴∠A+∠C= _________ °(等式的性質(zhì)).
270°,完成理由證明見(jiàn)解析.
解析試題分析:
關(guān)鍵是過(guò)點(diǎn)E作EF∥AB,
則利用兩直線平行,同旁內(nèi)角互補(bǔ)。得∠A+∠AEF=180°
再有AB∥CD和 EF∥AB,可知EF∥CD
由兩直線平行,同旁內(nèi)角互補(bǔ),得到∠C+∠CEF=180°
則得到∠A+∠AEF+∠CEF+∠C=360°,據(jù)等式的性質(zhì) 即∠A+∠AEC+∠C=360°
又∠AEC=90°得到∠A+∠C=270°.
試題解析:∠A與∠C的度數(shù)和為 270°.
理由:過(guò)點(diǎn)E作EF∥AB,
∵EF∥AB,
∴∠A+∠AEF=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).
∵AB∥CD( 已知 ),EF∥AB,
∴EF∥CD(平行于同一條直線的兩條直線互相平行)
∴∠C+∠CEF=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∴∠A+∠AEF+∠CEF+∠C= 360°(等式的性質(zhì))
即∠A+∠AEC+∠C= 360°°
∵∠AEC=90°(已知)
∴∠A+∠C= 270°(等式的性質(zhì)).
考點(diǎn):兩直線平行,同旁內(nèi)角互補(bǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖,AB⊥EF于點(diǎn)G,CD⊥EF于點(diǎn)H,GP平分∠EGB,HQ平分∠CHF,則圖中互相平行的直線有 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知AB∥CD,分別探討下列四個(gè)圖形中∠APC和∠A、∠C的關(guān)系,并選擇圖(1)、(2)之一說(shuō)明理由。 (10分)
(1) (2) (3) (4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知:如圖,EF⊥AB,CD⊥AB,AC⊥BC,∠1=∠2,求證:DG⊥BC
證明:∵EF⊥AB CD⊥AB
∴∠EFA=∠CDA=90°(垂直定義)
∠1=∠
∴EF∥CD
∴∠1=∠2(已知)
∴∠2=∠ACD(等量代換)
∴DG∥AC
∴∠DGB=∠ACB
∵AC⊥BC(已知)
∴∠ACB=90°(垂直定義)
∴∠DGB=90°即DG⊥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,以∠AOB的頂點(diǎn)O為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,交OA于點(diǎn)C,交OB于點(diǎn)D.再分別以點(diǎn)C、D為圓心,大于CD的長(zhǎng)為半徑畫(huà)弧,兩弧在∠AOB內(nèi)部交于點(diǎn)E,過(guò)點(diǎn)E作射線OE,連接CD.則下列說(shuō)法錯(cuò)誤的是
A.射線OE是∠AOB的平分線
B.△COD是等腰三角形
C.C、D兩點(diǎn)關(guān)于OE所在直線對(duì)稱
D.O、E兩點(diǎn)關(guān)于CD所在直線對(duì)稱
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直線AB、CD相交于點(diǎn)O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com