【題目】如圖,在平面直角坐標系中,已知點A在x正半軸,以點A為圓心作A,點M(4,4)在A上,直線y=﹣x+b與圓相切于點M,分別交x軸、y軸于B、C兩點.

(1)直接寫出b的值和點B的坐標;

(2)求點A的坐標和圓的半徑;

(3)若EF切A于點F分別交AB和BC于G、E,且FEBC,求的值.

【答案】1y=x+7;B,0(2)圓A的半徑為5(3)3

【解析】試題分析:1)將點M的坐標代入直線的解析式可求得b的值,由b的值可得到直線的解析式,然后令y=0可求得點B的橫坐標,于是得到點B的坐標;
2)由相互垂直的兩條直線的一次項系數(shù)為-1,可設(shè)直線AM的解析式為

然后將點M的坐標代入可求得c的值,然后令y=0可求得點A的橫坐標,最后依據(jù)兩點間的距離公式可求得圓A的半徑.
3)如圖1所示:連接AF、AM.先證明四邊形AFEM為正方形,于是可求得ME=5,然后在△ABM中依據(jù)勾股定理可求得MB的長,從而可求得BE的長,接下來,證明由相似三角形的性質(zhì)可求得答案.

試題解析:

(1)∵點M在直線上,

解得:b=7.

∴直線的解析式為

∵當y=0, ,解得:

(2)BC是圓A的切線,

AMBC.

設(shè)直線AM的解析式為

∵將M(4,4)代入解得:

∴直線AM的解析式為

∵當y=0, 解得x=1

A(1,0).

∵由兩點間的距離公式可知

∴圓A的半徑為5.

(3)如圖1所示:連接AF、AM.

BC、EF是圓A的切線,

AMBCAFEF.

又∵BCEF,

∴四邊形AFEM為矩形,

又∵AM=AF,

∴四邊形AFEM為正方形,

ME=AF=5.

∵在RtAMB,

∴△AGF∽△BGE.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某無人機于空中A處探測到目標B、D的俯角分別是30°60°,此時無人機的飛行高度AC60m.隨后無人機從A處繼續(xù)水平飛行30m到達A′處.

(1)AB之間的距離:

(2)求從無人機A上看目標D的俯角的正切值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).

(1)求證:△ADE≌△CBF;

(2)求證:四邊形BFDE為矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從相距480kmAB兩地相向而行,乙車比甲車先出發(fā)1小時,并以各自的速度勻速行駛,途徑C地,甲車到達C地停留1小時,因有事按原路原速返回A地.乙車從B地直達A地,兩車同時到達A地.甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車出發(fā)所用的時間x(小時)的關(guān)系如圖,結(jié)合圖象信息解答下列問題:

1)乙車的速度是___千米/時,t=___小時;

2)求甲車距它出發(fā)地的路程y與它出發(fā)的時間x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

3)直接寫出兩車相距150千米時x的取值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】由于受到手機更新?lián)Q代的影響,某手機店經(jīng)銷的甲型號手機二月份售價比一月份售價每臺降價500元.如果賣出相同數(shù)量的手機,那么一月份銷售額為9萬元,二月份銷售額只有8萬元.

(1)求二月份甲型號手機每臺售價為多少元?

(2)為了提高利潤,該店計劃三月份加入乙型號手機銷售,已知甲型每臺進價為3500元,乙型每臺進價為4000元,預計用不多于7.6萬元且不少于7.5萬元的資金購進這兩種手機共20臺,請問有幾種進貨方案?

(3)對于(2)中剛進貨的20臺兩種型號的手機,該店計劃對甲型號手機在二月份售價基礎(chǔ)上每售出一臺甲型手機再返還顧客現(xiàn)金a元,乙型手機按銷售價4400元銷售,若要使(2)中所有方案獲利相同,a應取何值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為建設(shè)美麗農(nóng)村,村委會打算在正方形地塊甲和長方形地塊乙上進行綠化.在兩地塊內(nèi)分別建造一個邊長為的大正方形花壇和四個邊長為的小正方形花壇(陰影部分),空白區(qū)域鋪設(shè)草坪,表示地塊甲中空白處鋪設(shè)草坪的面積, 表示地塊乙中空白處鋪設(shè)草坪的面積.

(1)__ , (用含的代數(shù)式表示并化簡) .

(2),的值.

(3),的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,對角線AC、BD相交于點O,BD2AD,E、FG分別是OC、ODAB的中點,下列結(jié)論:①BEAC②EGEF;EFG≌△GBE④EA平分∠GEF;四邊形BEFG是菱形.其中正確的個數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知E、F分別為正方形ABCD的邊BC、CD上的點,且∠EAF45°

1)如圖①求證:BE+DFEF

2)連接BD分別交AE、AFM、N

①如圖②,若AB6,BM3,求MN

②如圖③,若EFBD,求證:MNCE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于圓O,連接BD,∠BAD=105°,∠DBC=75°.

(1)求證:BDCD;

(2)若圓O的半徑為3,求的長.

查看答案和解析>>

同步練習冊答案