【題目】如圖,在ABCD中,E、F為對角線AC上的兩點(diǎn),且AE=CF,連接DE、BF,
(1)寫出圖中所有的全等三角形;
(2)求證:DE∥BF.
【答案】(1)△ABC≌△CDA,△ABF≌△△CDE,△ADE≌△CBF;(2)證明見試題解析.
【解析】
試題分析:(1)根據(jù)平行四邊形的性質(zhì)得出AB=CD,AD=CB,AB∥CD,AD∥CB,進(jìn)一步得到∠BAF=∠DCE,∠DAE=∠BCF,由SSS證明△ABC≌△CDA;由SAS證明△ABF≌△CDE;由SAS證明△ADE≌△CBF(SAS);
(2)由△ABF≌△△CDE,得出∠AFB=∠CED,即可證出DE∥BF.
試題解析:(1)△ABC≌△CDA,△ABF≌△△CDE,△ADE≌△CBF;理由如下:
∵四邊形ABCD是平行四邊形,∴AB=CD,AD=CB,AB∥CD,AD∥CB,∴∠BAF=∠DCE,∠DAE=∠BCF,在△ABC和△CDA中,∵AB=CD,CB=AD,AC=CA,∴△ABC≌△CDA(SSS);
∵AE=CF,∴AF=CE,在△ABF和△CDE中,∵AB=CD,∠BAF=∠DCE,AF=CE,∴△ABF≌△CDE(SAS);
在△ADE和△CBF中,∵AD=CB,∠DAE=∠BCF,AE=CF,∴△ADE≌△CBF(SAS).
(2)∵△ABF≌△△CDE,∴∠AFB=∠CED,∴DE∥BF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若方程mx-2y=3x+4是關(guān)于x,y的二元一次方程,則m的取值范圍是( )
A. m≠0 B. m≠3 C. m≠-3 D. m≠2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC向右平移5個單位長度,再向下平移2個單位長度,得到△A′B′C′,
(1)請畫出平移后的圖形△A′B′C′;
(2)并寫出△A′B′C′各頂點(diǎn)的坐標(biāo);
(3)求出△A′B′C′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)(﹣1,y1),(2,y2),(3,y3)是拋物線y=﹣x2+a上的三點(diǎn),則y1、y2、y3的大小關(guān)系為( 。
A.y3>y2>y1B.y1>y3>y2C.y3>y1>y2D.y1>y2>y3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識的增強(qiáng),越來越多的人喜歡騎自行車出行,也給自行車商家?guī)砩虣C(jī).某自行車行經(jīng)營的A型自行車去年銷售總額為8萬元.今年該型自行車每輛售價預(yù)計(jì)比去年降低200元.若該型車的銷售數(shù)量與去年相同,那么今年的銷售總額將比去年減少10%,求:
(1)A型自行車去年每輛售價多少元?
(2)該車行今年計(jì)劃新進(jìn)一批A型車和新款B型車共60輛,且B型車的進(jìn)貨數(shù)量不超過A型車數(shù)量的兩倍.已知,A型車和B型車的進(jìn)貨價格分別為1500元和1800元,計(jì)劃B型車銷售價格為2400元,應(yīng)如何組織進(jìn)貨才能使這批自行車銷售獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程(m﹣1)x2+5x+m2﹣5m+4=0有一個根為0,則m的值等于( 。
A. 1 B. 1或4 C. 4 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】哈市某花卉種植基地欲購進(jìn)甲、乙兩種君子蘭進(jìn)行培育,若購進(jìn)甲種2株,乙種3株,則共需要成本1700元;若購進(jìn)甲種3株,乙種1株,則共需要成本1500元.
(1)求甲乙兩種君子蘭每株成本分別為多少元?
(2)該種植基地決定在成本不超過30000元的前提下購進(jìn)甲、乙兩種君子蘭,若購進(jìn)乙種君子蘭的株數(shù)比甲種君子蘭的3倍還多10株,求最多購進(jìn)甲種君子蘭多少株?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),E是直線AB,CD內(nèi)部一點(diǎn),AB∥CD,連接EA,ED.
(1)探究:
①若∠A=30°,∠D=40°,則∠AED等于多少度?
②若∠A=20°,∠D=60°,則∠AED等于多少度?
③在圖(1)中∠AED、∠EAB、∠EDC有什么數(shù)量關(guān)系,并證明你的結(jié)論.
(2)拓展:如圖(2),射線FE與矩形ABCD的邊AB交于點(diǎn)E,與邊CD交于點(diǎn)F,①②③④分別是被射線FE隔開的四個區(qū)域(不含邊界,其中③④位于直線AB的上方),P是位于以上四個區(qū)域上點(diǎn),猜想:∠PEB、∠PFC、∠EPF之間的關(guān)系.(不要求證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com