【題目】△ABC和△DEF是兩個全等的等腰直角三角形,∠BAC=∠EDF=90°,△EDF的頂點E與△ABC的斜邊BC的中點重合,將△DEF繞點E旋轉,旋轉過程中,線段DE與線段AB相交于點P,線段EF與射線CA相交于點Q.
(1)如圖①,當點Q在線段AC上,且AP=AQ時,求證:△BPE≌△CQE;
(2)如圖②,當點Q在線段CA的延長線上時,求證:△BPE∽△CEQ;
(3)在(2)的條件下,BP=2,CQ=9,則BC的長為_______.
【答案】(1)見解析;(2)見解析;(3)
【解析】
(1)由AB=AC,AP=AQ可得BP=CQ,又因BE=CE,∠B=∠C=45°,利用“SAS”判定△BPE≌△CQE;
(2)如下圖,連接PQ,根據三角形的一個外角等于與它不相鄰的兩個內角的和可得∠BEP+∠DEF=∠EQC+∠C,所以∠BEP=∠EQC;再由兩角對應相等的兩個三角形相似可得△BPE∽△CEQ;
(3)根據相似三角形的性質可得,把BP=2,CQ=代入上式可求得BE=CE,進而求得BC的長.
(1)∵△ABC是等腰直角三角形,
∴∠B=∠C=45°,AB=AC,
∵AP=AQ,
∴BP=CQ,
∵E是BC的中點,
∴BE=CE,
在△BPE和△CQE中,
∵,
∴△BPE≌△CQE(SAS);
(2)如下圖,連接PQ,
∵△ABC和△DEF是兩個全等的等腰直角三角形,
∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,
即∠BEP+∠DEF=∠EQC+∠C,
∴∠BEP+45°=∠EQC+45°,
∴∠BEP=∠EQC,
∴△BPE∽△CEQ;
(3)∵△BPE∽△CEQ
∴
∵BP=2,CQ=9,BE=CE
∴
∴BE=CE=
∴BC=.
科目:初中數學 來源: 題型:
【題目】四邊形是正方形,將線段繞點逆時針旋轉,得到線段,連接,過點作交的延長線于,連接.
(1)依題意補全圖1;
(2)直接寫出的度數;
(3)連接,用等式表示線段與的數量關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,中,.
(1)請用尺規(guī)作圖的方法在邊上確定點,使得點到邊的距離等于的長;(保留作用痕跡,不寫作法)
(2)在(1)的條件下,求證:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小穎為班級聯歡會設計了一個“配紫色”游戲:如圖是兩個可以自由轉動的轉盤,每個轉盤被分成面積相等的三個扇形.游戲者同時轉動兩個轉盤,如果一個轉盤轉出紅色,另一個轉盤轉出藍色,那么就能配成紫色.小明和小亮參加這個游戲,并約定:若配成紫色,則小明贏;若兩個轉盤轉出的顏色相同,則小亮贏.這個游戲對雙方公平嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2017山東日照)已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=2,與x軸的一個交點坐標為(4,0),其部分圖象如圖所示,下列結論:
①拋物線過原點;
②4a+b+c=0;
③a﹣b+c<0;
④拋物線的頂點坐標為(2,b);
⑤當x<2時,y隨x增大而增大.
其中結論正確的是( )
A. ①②③ B. ③④⑤ C. ①②④ D. ①④⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某體育用品商店購進了足球和排球共20個,一共花了1360元,進價和售價如表:
足球 | 排球 | |
進價(元/個) | 80 | 50 |
售價(元/個) | 95 | 60 |
(l)購進足球和排球各多少個?
(2)全部銷售完后商店共獲利潤多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCO的邊長為,OA與x軸正半軸的夾角為15°,點B在第一象限,點D在x軸的負半軸上,且滿足∠BDO=15°,直線y=kx+b經過B、D兩點,則b﹣k=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請僅用無刻度的直尺,根據下列條件分別在圖(1),圖(2),(3)中作出△ABC的邊AB上的高CD.
(1)如圖(1),以銳角三角形ABC的邊AB為直徑的圓,與邊BC、AC分別交于點E、F;
(2)如圖(2),以等腰三角形ABC的底邊AB為直徑的圓,頂點C在圓內;
(3)如圖(3),以鈍角三角形ABC的一短邊AB為直徑的圓,與最長的邊AC相交于點E.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等邊三角形ABC的AC,BC邊上各取一點P,Q,使AP=CQ,AQ,BP相交于點O.若BO=6,PO=2,則AP的長,AO的長分別為__________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com