【題目】如圖,點為等邊外一點,,連接,若,的面積為,則的長為_____________.
【答案】
【解析】
作等邊△CDE,延長ED,作AF⊥ED,過點C作CM⊥DE,根據(jù)SAS定理證明△BCD≌△ACE,從而得到,然后根據(jù)題意判定AD∥CE,從而得到,然后根據(jù)含30°直角三角形的性質(zhì)結(jié)合三角形的面就,求得,DF=,從而求得DE和AF的長度,然后利用勾股定理求解.
解:作等邊△CDE,延長ED,作AF⊥ED,過點C作CM⊥DE
由題意可知:∠ACB=∠ECD=60°,AC=AB,DC=EC
∴∠ACB+∠ACD=∠ECD+∠ACD
∴∠BCD=∠ACE
∴△BCD≌△ACE
∴BD=AE,
∵∠DCE=∠ADC=60°
∴AD∥CE
∴
∴,
解得:DE=5
又∵∠ADC=∠CDE=60°
∴∠ADF=60°
∴在Rt△ADF中,∠DAF=30°
∴DF=,
∴EF=5+4=9
在Rt△AEF中,
∴BD=
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).動點M,N同時從B點出發(fā),分別沿B→A,B→C運動,速度是1厘米/秒.過M作直線垂直于AB,分別交AN,CD于P,Q.當(dāng)點N到達(dá)終點C時,點M也隨之停止運動.設(shè)運動時間為t秒.
(1)若a=4厘米,t=1秒,則PM=______厘米;
(2)若a=5厘米,求時間t,使△PNB∽△PAD,并求出它們的相似比;
(3)若在運動過程中,存在某時刻使梯形PMBN與梯形PQDA的面積相等,求a的取值范圍;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于二次函數(shù),有下列結(jié)論:①其圖象與x軸一定相交;②若,函數(shù)在時,y隨x的增大而減小;③無論a取何值,拋物線的頂點始終在同一條直線上;④無論a取何值,函數(shù)圖象都經(jīng)過同一個點.其中所有正確的結(jié)論是___.(填寫正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y= 與一次函數(shù)y=x+b的圖形在第一象限相交于點A(1,﹣k+4).
(1)試確定這兩函數(shù)的表達(dá)式;
(2)求出這兩個函數(shù)圖象的另一個交點B的坐標(biāo),并求△AOB的面積;
(3)根據(jù)圖象直接寫出反比例函數(shù)值大于一次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上一點,且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若PD=1,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點為坐標(biāo)原點,直線與軸、軸分別交于點、,點在軸負(fù)半軸上,且.
(1)求的值;
(2)把沿軸翻折,使點落在軸的點處,點為線段上一點,連接交軸于點,設(shè)點橫坐標(biāo)為,的面積為,求與、的函數(shù)解析式(用含、的代數(shù)式表示);
(3)在(2)的條件下,若,點的縱坐標(biāo)為,求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓交BC于D,過D作⊙O的切線EF交AC于E,交AB延長線于F.
(1)求證:DE⊥AC.
(2)若BD=2,tan∠CDE=,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的邊AB在x軸上,點B坐標(biāo)(﹣3,0),點C坐標(biāo)(0,4),點P從原點O出發(fā),以每秒一個單位長度的速度沿x軸正方向移動,移動時間為t(0≤t≤5)秒,過點P作平行于y軸的直線l,直線l掃過四邊形OCDA的面積為S.
(1)求直線AD的函數(shù)表達(dá)式;
(2)當(dāng)S=時,請直接寫出t的值;
(3)如果點M是(2)中的直線1上的點,點N在x軸上,并且以A,D,M,N為頂點的四邊形是平行四邊形,請直接寫出點N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C均落在格點上.
(1)△ABC的面積等于____;
(2)請在如圖所示的網(wǎng)格中,用無刻度的直尺,過點A畫一條直線,交BC于點D,使△ABD的面積等于△ADC面積的2倍,并簡要說明畫圖的方法(不要求證明).___
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com