【題目】如圖,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,則下列結(jié)論:
①∠BOE=°;
②OF平分∠BOD;
③∠POE=∠BOF;
④∠POB=2∠DOF.
其中正確的個數(shù)有多少個?( )
A.1 B.2 C.3 D.4
科目:初中數(shù)學 來源: 題型:
【題目】操作與證明:
如圖1,已知P是矩形ABCD的邊BC上的一個點(P與B、C兩點不重合),過點P作射線PE⊥AP,在射線PE上截取線段PF,使得PF=AP.
(1)過點F作FG⊥BC交射線BC點G.(尺規(guī)作圖,保留痕跡,不寫作法)
(2)求證:FG=BP.
探究與計算:
(3)如圖2,若AB=BC,連接CF,求∠FCG的度數(shù);
(4)在(3)的條件下,當=時,求sin∠CFP的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,點P在BC上運動,當△ODP是腰長為5的等腰三角形時,則P點的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求證:CD⊥AB.
證明:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=∠ACB=90°(垂直定義)
∴DG∥AC( )
∴∠2= ( )
∵∠1=∠2(已知)
∴∠1=∠ (等量代換)
∴EF∥CD( )
∴∠AEF=∠ ( )
∵EF⊥AB(已知)
∴∠AEF=90°( )
∴∠ADC=90°( )
∴CD⊥AB( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,AB∥CD∥GH,EG平分∠BEF,F(xiàn)G平分∠EFD
求證:∠EGF=90°
(1)把下列證明過程及理由補充完整.
(2 )請你用精煉準確的文字將上述結(jié)論總結(jié)出來.
證明:∵HG∥AB(已知)
∴∠1=∠3 ( )
又∵HG∥CD(已知)
∴∠2=∠4(同理)
∵AB∥CD(已知)
∴∠BEF+ =180° ( )
又∵EG平分∠BEF(已知)
∴∠1=∠
又∵FG平分∠EFD(已知)
∴∠2=∠EFD (同理)
∴∠1+∠2=( + )
∴∠1+∠2=90°
∴∠3+∠4=90°
即∠EGF=90°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com