【題目】如圖,△ABC是邊長為8等邊三角形,如圖所示,現(xiàn)有兩點M、N分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度為每秒1個單位長度,點N的運度為每秒2個單位長度,當點M第一次到達B點時,M、N同時停止運動.
(1)點M、N運動幾秒后,可得到等邊三角形?
(2)點M、N運動幾秒后,M、N兩點重合?
(3)當點M、N在BC邊上運動時,能否得到以MN為底邊的等腰?如存在,請求出此時M、N運動的時間.
【答案】(1)秒;(2)8秒;(3)能得到,秒;
【解析】
(1)設點M、N運動t秒后,可得到等邊三角形,由等邊三角形的判定可得,用含t的式子表示出AM,AN的長求解即可;
(2)根據(jù)M、N兩點的路程差為8可得方程求解即可;
(3)假設是等腰三角形,利用AAS證明,由全等的性質可得,設點M、N在BC邊上運動y秒,用含y的式子表示出CM、BN的長,列方程求解即可.
解:(1)設點M、N運動t秒后,可得到等邊三角形,則有,
解得
所以點M、N運動秒后,可得到等邊三角形.
(2)設點M、N運動x秒后,M、N兩點重合,可得
解得
點M、N運動8秒后,M、N兩點重合.
(3)能得到.
假設是等腰三角形,
△ABC是邊長為8等邊三角形
在和中
設點M、N在BC邊上運動y秒時,得到以MN為底邊的等腰,則
解得 ,故假設成立.
所以當點M、N在BC邊上運動時,能得到以MN為底邊的等腰,此時M、N運動的時間為秒.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=AC,AD=AE,點D在線段BE上,且∠BAC=∠DAE.當∠BAD=15°,∠ACE=25°時,∠BEC=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.擲一枚均勻的骰子,骰子停止轉動后,6點朝上是必然事件
B.甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是,,則甲的射擊成績較穩(wěn)定
C.“明天降雨的概率為”,表示明天有半天都在降雨
D.了解一批電視機的使用壽命,適合用普查的方式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=﹣1,點B的坐標為(1,0),則下列結論:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正確的結論有( 。﹤.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,拋物線y=x2﹣2x﹣3與x軸交于A、B兩點,與y軸交于點C,該拋物線的頂點為M.
(1)求點A、B、C的坐標.
(2)求直線BM的函數(shù)解析式.
(3)試說明:∠CBM+∠CMB=90°.
(4)在拋物線上是否存在點P,使直線CP把△BCM分成面積相等的兩部分?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中國是世界上13個貧水國家之一.某校有800名在校學生,學校為鼓勵學生節(jié)約用水,展開“珍惜水資源,節(jié)約每一滴水”系列教育活動.為響應學校號召,數(shù)學小組做了如下調查:
小亮為了解一個擰不緊的水龍頭的滴水情況,記錄了滴水時間和燒杯中的水面高度,如圖1.小明設計了調查問卷,在學校隨機抽取一部分學生進行了問卷調查,并制作出統(tǒng)計圖.如圖2和圖3.
經(jīng)結合圖2和圖3回答下列問題:
(1)參加問卷調查的學生人數(shù)為 人,其中選C的人數(shù)占調查人數(shù)的百分比為 .
(2)在這所學校中選“比較注意,偶爾水龍頭滴水”的大概有 人.若在該校隨機抽取一名學生,這名學生選B的概率為 .
請結合圖1解答下列問題:
(3)在“水龍頭滴水情況”圖中,水龍頭滴水量(毫升)與時間(分)可以用我們學過的哪種函數(shù)表示?請求出函數(shù)關系式.
(4)為了維持生命,每人每天需要約2400毫升水,該校選C的學生因沒有擰緊水龍頭,2小時浪費的水可維持多少人一天的生命需要?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=x+4與x軸、y軸分別交于點A和點B,在線段AB上有一動點P(不與點A、B重合),連接OP,當點P的坐標為_____時線段OP最短.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線BD的長為1,點P是線段BD上的一點,聯(lián)結CP,將△BCP沿著直線CP翻折,若點B落在邊AD上的點E處,且EP//AB,則AB的長等于________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,F(xiàn)分別是邊AD,BC的中點,連接DF,過點E作EH⊥DF,垂足為H,EH的延長線交DC于點G.
(1)猜想DG與CF的數(shù)量關系,并證明你的結論;
(2)過點H作MN∥CD,分別交AD,BC于點M,N,若正方形ABCD的邊長為10,點P是MN上一點,求△PDC周長的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com