【題目】如圖,一次函數(shù)的圖像與軸交于點(diǎn),與軸交于點(diǎn),且經(jīng)過點(diǎn).
(1)當(dāng)時(shí);
①求一次函數(shù)的表達(dá)式;
②平分交軸于點(diǎn),求點(diǎn)的坐標(biāo);
(2)若△為等腰三角形,求的值;
(3)若直線也經(jīng)過點(diǎn),且,求的取值范圍.
【答案】(1)①;②(-,0);(2) ;(3) .
【解析】
(1)①把x=2,y=代入中求出k值即可;
②作DE⊥AB于E,先求出點(diǎn)A、點(diǎn)B坐標(biāo),繼而求出OA、OB、AB的長度,由角平分線的性質(zhì)可得到OD=DE,于是BE=OB可求BE、AE的長,然后在中用勾股定理可列方程,解方程即可求得OD的長;
(2)求得點(diǎn)A坐標(biāo)是(-4,0),點(diǎn)C坐標(biāo)是(2,),由△為等腰三角形,可知OC=OA=4,故,解方程即可;
(3) 由直線經(jīng)過點(diǎn), 得=,由(2)知,故,用k表示p代入中得到關(guān)于k的不等式,解不等式即可.
解:(1)當(dāng)時(shí),點(diǎn)C坐標(biāo)是,
①把x=2,y=代入中,
得,
解得,
所以一次函數(shù)的表達(dá)式是;
②如圖,平分交軸于點(diǎn),作DE⊥AB于E,
∵在中,當(dāng)x=0時(shí),y=3;當(dāng)y=0時(shí),x=-4,
∴點(diǎn)A坐標(biāo)是(-4,0),點(diǎn)B坐標(biāo)是(0,3),
∴OA=4,OB=3,
∴,
∵平分, DE⊥AB, DO⊥OB,
∴OD=DE,
∵BD=BD,
∴,
∴BE=OB=3,
∴AE=AB-BE=5-3=2,
∵在中,,
∴,
∴OD= ,
∴點(diǎn)D坐標(biāo)是(-,0),
(2) ∵在中,當(dāng)y=0時(shí),x=-4;當(dāng)x=2時(shí),y=,
∴點(diǎn)A坐標(biāo)是(-4,0),點(diǎn)C坐標(biāo)是(2,),
∵△為等腰三角形,
∴OC=OA=4,
∴,
∴,(不合題意,舍去),
∴.
(3) ∵直線經(jīng)過點(diǎn),
∴=,
由(2)知,
∴,
∴,
∵,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1、2、3分別表示甲、乙、丙三人由A地到B地的路線圖,已知
甲的路線為:A→C→B;
乙的路線為:A→D→E→F→B,其中E為AB的中點(diǎn);
丙的路線為:A→I→J→K→B,其中J在AB上,且AJ>JB.
若符號(hào)[→]表示[直線前進(jìn)],則根據(jù)圖1、圖2、圖3的數(shù)據(jù),判斷三人行進(jìn)路線長度的大小關(guān)系為( 。
A. 甲=乙=丙 B. 甲<乙<丙 C. 乙<丙<甲 D. 丙<乙<甲
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從謝家集到田家庵有3路,121路,26路三條不同的公交線路.為了解早高峰期間這三條線路上的公交車從謝家集到田家庵的用時(shí)時(shí)間,在每條線路上隨機(jī)選取了450個(gè)班次的公交車,收集了這些班次的公交車用時(shí)(單位:分鐘)的數(shù)據(jù),統(tǒng)計(jì)如下:
用時(shí)的頻數(shù) 用時(shí) 線路 | 合計(jì) | |||
3路 | 260 | 167 | 23 | 450 |
121路 | 160 | 166 | 124 | 450 |
26路 | 50 | 122 | 278 | 450 |
早高峰期間,乘坐__________(“3路”,“121路”或“26路”)線路上的公交車,從謝家集到田家庵“用時(shí)不超過50分鐘”的可能性最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知、分別為的直徑和弦,為 的中點(diǎn),垂直于的延長線于,連接,若,,下列結(jié)論一定錯(cuò)誤的是( )
A. DE是⊙O的切線 B. 直徑AB長為20cm
C. 弦AC長為16cm D. C為 的中點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)的圖像為直線.
(1)若直線與正比例函數(shù)的圖像平行,且過點(diǎn)(0,2),求直線的函數(shù)表達(dá)式;
(2)若直線過點(diǎn)(3,0),且與兩坐標(biāo)軸圍成的三角形面積等于3,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)結(jié)論,其中正確的結(jié)論為( )
A. 等邊三角形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形
B. 對(duì)角線相等的四邊形是矩形
C. 三角形的外心到三個(gè)頂點(diǎn)的距離相等
D. 任意三個(gè)點(diǎn)都可確定一個(gè)圓
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),AB為半圓O的直徑,D為BA的延長線上一點(diǎn),DC為半圓O的切線,切點(diǎn)為C.
(1)求證:∠ACD=∠B;
(2)如圖(2),∠BDC的平分線分別交AC,BC于點(diǎn)E,F(xiàn),求∠CEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD對(duì)角線AC上一動(dòng)點(diǎn),點(diǎn)E在射線BC上,且PB=PE,連接PD,O為AC中點(diǎn).
(1)如圖1,當(dāng)點(diǎn)P在線段AO上時(shí),試猜想PE與PD的數(shù)量關(guān)系和位置關(guān)系,不用說明理由;
(2)如圖2,當(dāng)點(diǎn)P在線段OC上時(shí),(1)中的猜想還成立嗎?請(qǐng)說明理由;
(3)如圖3,當(dāng)點(diǎn)P在AC的延長線上時(shí),請(qǐng)你在圖3中畫出相應(yīng)的圖形(尺規(guī)作圖,保留作圖痕跡,不寫作法),并判斷(1)中的猜想是否成立?若成立,請(qǐng)直接寫出結(jié)論;若不成立,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,為邊上的中線,過點(diǎn)作于點(diǎn),過點(diǎn)作平行線,交的延長線于點(diǎn),在延長線上截得,連結(jié)、.若,,則四邊形的面積等于________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com