【題目】△ABC中,∠BAC=α°,AB=AC,D是BC上一點(diǎn),將AD繞點(diǎn)A順時針旋轉(zhuǎn)α°,得到線段AE,連接BE.
(1)(特例感知)如圖1,若α=90,則BD+BE與AB的數(shù)量關(guān)系是 .
(2)(類比探究)如圖2,若α=120,試探究BD+BE與AB的數(shù)量關(guān)系,并證明.
(3)(拓展延伸)如圖3,若α=120,AB=AC=4,BD=,Q為BA延長線上的一點(diǎn),將QD繞點(diǎn)Q順時針旋轉(zhuǎn)120°,得到線段QE,DE⊥BC,求AQ的長.
【答案】(1);(2),見解析;(3)
【解析】
(1)根據(jù)SAS可證△ABE≌△ACD,進(jìn)而可得BE=CD,結(jié)合BD+CD=BC可得BD+ BE=BC,再根據(jù)等腰直角三角形中BC=即可證得;
(2)過點(diǎn)A作AH⊥BC,根據(jù)∠BAC=120°,AB=AC可得∠ABC=30°,,則,由(1)可知BD+ BE=BC,由此即可得;
(3)過Q點(diǎn)作QF∥AC交BC延長線于點(diǎn)F,先證∠BQF =120°,BQ=QF,進(jìn)而可由(2)同理可知,△QBE≌△QFD,,進(jìn)而可證得,再根據(jù)cos∠EBD==cos60°=可求得,進(jìn)而求得,最后根據(jù)AQ=BQ-AB即可得到答案.
解:(1)
理由如下:
∵∠EAD=∠BAC=90°
∴∠EAB=∠DAC
在△ABE與△ACD中,
∴△ABE≌△ACD(SAS)
∴BE=CD,
∵BD+CD=BC
∴BD+ BE=BC
∵在Rt△ABC中,∠BAC=90°,AB=AC,
∴BC=
∴BD+ BE=;
(2)結(jié)論:,
理由如下:
過點(diǎn)A作AH⊥BC,
∵∠BAC=120°,AB=AC
∴∠ABC=30°,
在Rt△ABH中,cos∠ABH==cos30°=
∴BH=AB,
∴
由(1)同理可知BD+ BE=BC,
∴;
(3)過Q點(diǎn)作QF∥AC交BC延長線于點(diǎn)F,
∴
∴∠QFC=∠QBF =30°,∠BQF =120°
∴BQ=QF
由(2)同理可知,△QBE≌△QFD,
∴cos∠EBD==cos60°=
∵
,
∴AQ=BQ-AB=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,.半徑為的圓與邊相交于點(diǎn)與邊相交于點(diǎn)連結(jié)并延長,與線段的延長線交于點(diǎn).
(1)當(dāng)時,連結(jié)若與相似,求的長;
(2)若求的正切值;
(3)若,設(shè)的周長為,求關(guān)于的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,AD⊥BC于點(diǎn)D,BE⊥AC于點(diǎn)E,AD與BE交于點(diǎn)F,BH⊥AB于點(diǎn)B,點(diǎn)M是BC的中點(diǎn),連接FM并延長交BH于點(diǎn)H.
(1)如圖①所示,若∠ABC=30°,求證:DF+BH=BD;
(2)如圖②所示,若∠ABC=45°,如圖③所示,若∠ABC=60°(點(diǎn)M與點(diǎn)D重合),猜想線段DF、BH與BD之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為直徑,點(diǎn)為半徑上異于點(diǎn)和點(diǎn)的一個點(diǎn),過點(diǎn)作與直徑垂直的弦,連接,作,交于點(diǎn),連接、,交于點(diǎn).
(1)求證:為的切線;
(2)若的半徑為,,求;
(3)請猜想與的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,點(diǎn)D在BC上,且CD=3cm.動點(diǎn)P,Q同時從點(diǎn)C出發(fā),均以1cm/s的速度運(yùn)動,其中點(diǎn)P沿CA向終點(diǎn)A運(yùn)動;點(diǎn)Q沿CB向終點(diǎn)B運(yùn)動.過點(diǎn)P作PE∥BC,分別交AD,AB于點(diǎn)E,F,設(shè)動點(diǎn)Q運(yùn)動的時間為t秒.
(1)求DQ的長(用含t的代數(shù)式表示);
(2)以點(diǎn)Q,D,F,E為頂點(diǎn)圍成的圖形面積為S,求S與t之間的函數(shù)關(guān)系式;
(3)連接PQ,若點(diǎn)M為PQ中點(diǎn),在整個運(yùn)動過程中,直接寫出點(diǎn)M運(yùn)動的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個工程隊(duì)計(jì)劃修建一條長15千米的鄉(xiāng)村公路,已知甲工程隊(duì)每天比乙工程隊(duì)每天多修路0.5千米,乙工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)是甲工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)的1.5倍.
(1)求甲、乙兩個工程隊(duì)每天各修路多少千米?
(2)若甲工程隊(duì)每天的修路費(fèi)用為0.5萬元,乙工程隊(duì)每天的修路費(fèi)用為0.4萬元,要使兩個工程隊(duì)修路總費(fèi)用不超過5.2萬元,甲工程隊(duì)至少修路多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,要在某東西走向的A、B兩地之間修一條筆直的公路,在公路起點(diǎn)A處測得某農(nóng)戶C在A的北偏東68°方向上.在公路終點(diǎn)B處測得該農(nóng)戶c在點(diǎn)B的北偏西45°方向上.已知A、B兩地相距2400米.
(1)求農(nóng)戶c到公路B的距離;(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
(2)現(xiàn)在由于任務(wù)緊急,要使該修路工程比原計(jì)劃提前4天完成,需將該工程原定的工作效率提高20%,求原計(jì)劃該工程隊(duì)毎天修路多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),豐富課余生活,決定開設(shè)以下體育課外活動項(xiàng)目:A.籃球,B.乒乓球,C.羽毛球,D.足球.為了解學(xué)生最喜歡哪一種活動項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請回答下列問題:
(1)這次被調(diào)查的學(xué)生共有 人,在扇形統(tǒng)計(jì)圖中B區(qū)域的圓心角度數(shù)為 ;
(2)請你將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在平時的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,學(xué)校決定從這四名同學(xué)中任選兩名參加市乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過點(diǎn)B作⊙O的切線BD,與CA的延長線交于點(diǎn)D,與半徑AO的延長線交于點(diǎn)E,過點(diǎn)A作⊙O的切線AF,與直徑BC的延長線交于點(diǎn)F.
(1)求證:△ACF∽△DAE;
(2)若S△AOC=,求DE的長;
(3)連接EF,求證:EF是⊙O的切線.
【答案】(1) 見解析; (2)3 ;(3)見解析.
【解析】試題分析:(1)根據(jù)圓周角定理得到∠BAC=90°,根據(jù)三角形的內(nèi)角和得到∠ACB=60°根據(jù)切線的性質(zhì)得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到結(jié)論;
(2)根據(jù)S△AOC=,得到S△ACF=,通過△ACF∽△DAE,求得S△DAE=,過A作AH⊥DE于H,解直角三角形得到AH=DH=DE,由三角形的面積公式列方程即可得到結(jié)論;
(3)根據(jù)全等三角形的性質(zhì)得到OE=OF,根據(jù)等腰三角形的性質(zhì)得到∠OFG=(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,過O作OG⊥EF于G,根據(jù)全等三角形的性質(zhì)得到OG=OA,即可得到結(jié)論.
試題解析:(1)證明:∵BC是⊙O的直徑,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°
∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切線,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切線,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;
(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵S△AOC=,∴S△ACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴S△DAE=,過A作AH⊥DE于H,∴AH=DH=DE,∴S△ADE=DEAH=×=,∴DE=;
(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFO,在△AOF與△BOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,過O作OG⊥EF于G,∴∠OAF=∠OGF=90°,在△AOF與△OGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切線.
【題型】解答題
【結(jié)束】
25
【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),四邊形ABCO是矩形,點(diǎn)A,C的坐標(biāo)分別是A(0,2)和C(2,0),點(diǎn)D是對角線AC上一動點(diǎn)(不與A,C重合),連結(jié)BD,作DE⊥DB,交x軸于點(diǎn)E,以線段DE,DB為鄰邊作矩形BDEF.
(1)填空:點(diǎn)B的坐標(biāo)為 ;
(2)是否存在這樣的點(diǎn)D,使得△DEC是等腰三角形?若存在,請求出AD的長度;若不存在,請說明理由;
(3)①求證:;
②設(shè)AD=x,矩形BDEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(可利用①的結(jié)論),并求出y的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com