如圖,在Rt△ABC中,∠C=90°,點(diǎn)D在AB上,以BD為直徑的⊙O與AC交于點(diǎn)E,且BE平分∠ABC,
(1)判斷直線AC與⊙O的位置關(guān)系,并說明理由;
(2)若AD=2,AE=,求⊙O的面積.
(1)直線AC與⊙O相切,證明見解析;(2)⊙O的面積為:.
【解析】
試題分析:(1)取BD的中點(diǎn)O,連接OE,證明∠OEB=∠CBE后可得OE⊥AC;
(2)設(shè)⊙O的半徑為r,則在Rt△AOE中,利用勾股定理列出有關(guān)半徑的方程求得半徑,即可求⊙O的面積.
試題解析:(1)直線AC與⊙O相切,理由是:
連接OE
∵OB=OE
∴∠OBE=∠OEB
∵∠OBE=∠CBE
∴∠OEB=∠CBE
∴OE ∥ BC
∴∠AEO=∠C=90°
∴ AC是⊙O的切線;
(2)設(shè)半徑為r,根據(jù)勾股定理
r=2
⊙O的面積為:.
考點(diǎn):1.切線定義,2.勾股定理.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com