【題目】已知拋物線y=kx2+(k﹣2)x﹣2(其中k>0).
(1)求該拋物線與x軸的交點(diǎn)及頂點(diǎn)的坐標(biāo)(可以用含k的代數(shù)式表示);
(2)若記該拋物線頂點(diǎn)的坐標(biāo)為P(m,n),直接寫出|n|的最小值;
(3)將該拋物線先向右平移個單位長度,再向上平移個單位長度,隨著k的變化,平移后的拋物線的頂點(diǎn)都在某個新函數(shù)的圖象上,求新函數(shù)的解析式(不要求寫自變量的取值范圍).
【答案】(1)拋物線的頂點(diǎn)坐標(biāo)是(,﹣);(2)當(dāng)k=2時,|n|的最小值是2;(3)新函數(shù)的解析式為y=﹣﹣1.
【解析】試題分析:(1)令y=0,解方程kx2+(k﹣2)x﹣2=0即可得到拋物線與x軸的交點(diǎn),根據(jù)拋物線的頂點(diǎn)坐標(biāo)公式(﹣)代入進(jìn)行計算即可求解;
(2)根據(jù)(1)的結(jié)果,然后利用絕對值的性質(zhì),再根據(jù)不等式的性質(zhì)進(jìn)行解答;
(3)根據(jù)左加右減,上加下減,寫出平移后的拋物線頂點(diǎn)坐標(biāo),然后消掉字母k即可得解.
試題解析:解:(1)當(dāng)y=0時,kx2+(k﹣2)x﹣2=0,即(kx﹣2)(x+1)=0,解得:x1=,x2=﹣1,∴拋物線與x軸的交點(diǎn)坐標(biāo)是(,0)與(﹣1,0),﹣=﹣=﹣==﹣,∴拋物線的頂點(diǎn)坐標(biāo)是(﹣,﹣);
(2)根據(jù)(1),|n|=|﹣|===++1≥2+1=1+1=2,當(dāng)且僅當(dāng)=,即k=2時取等號,∴當(dāng)k=2時,|n|的最小值是2;
(3)﹣+=,﹣+===﹣k﹣1,設(shè)平移后的拋物線的頂點(diǎn)坐標(biāo)為(x,y),則,消掉字母k得:y=﹣﹣1,∴新函數(shù)的解析式為y=﹣﹣1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小東和小明要測量校園里的一塊四邊形場地ABCD(如圖所示)的周長,其中邊CD上有水池及建筑遮擋,沒有辦法直接測量其長度.
小東經(jīng)測量得知AB=AD=5m,∠A=60°,BC=12m,∠ABC=150°.
小明說根據(jù)小東所得的數(shù)據(jù)可以求出CD的長度.
你同意小明的說法嗎?若同意,請求出CD的長度;若不同意,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)老師布置了一道思考題“計算:(-)÷()”,小明仔細(xì)思考了一番,用了一種不同的方法解決了這個問題.
小明的解法:原式的倒數(shù)為()÷()=()×(-12)=-4+10=6,所以(-)÷()=.
(1)請你判斷小明的解答是否正確,并說明理由.
(2)請你運(yùn)用小明的解法解答下面的問題.
計算:(-)÷(+).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為解決中小學(xué)大班額問題,東營市各縣區(qū)今年將改擴(kuò)建部分中小學(xué),某縣計劃對A、B兩類學(xué)校進(jìn)行改擴(kuò)建,根據(jù)預(yù)算,改擴(kuò)建2所A類學(xué)校和3所B類學(xué)校共需資金7800萬元,改擴(kuò)建3所A類學(xué)校和1所B類學(xué)校共需資金5400萬元.
(1)改擴(kuò)建1所A類學(xué)校和1所B類學(xué)校所需資金分別是多少萬元?
(2)該縣計劃改擴(kuò)建A、B兩類學(xué)校共10所,改擴(kuò)建資金由國家財政和地方財政共同承擔(dān).若國家財政撥付資金不超過11800萬元;地方財政投入資金不少于4000萬元,其中地方財政投入到A、B兩類學(xué)校的改擴(kuò)建資金分別為每所300萬元和500萬元.請問共有哪幾種改擴(kuò)建方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A(8,0),直線y=-3x+6與x軸交于點(diǎn)B,與y軸交于點(diǎn)D,且兩直線交于點(diǎn)C(4,m).
(1)求m的值及一次函數(shù)的解析式;
(2)求△ACD的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點(diǎn),E、F分別是線段BM、CM的中點(diǎn).
(1)求證:△ABM≌△DCM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)一個兩位正整數(shù),a表示十位上的數(shù)字,b表示個位上的數(shù)字(a≠b,ab≠0),則這個兩位數(shù)用多項(xiàng)式表示為 (含a、b的式子);若把十位、個位上的數(shù)字互換位置得到一個新兩位數(shù),則這兩個兩位數(shù)的和一定能被 整除,這兩個兩位數(shù)的差一定能被 整除.
(2)一個三位正整數(shù)F,各個數(shù)位上的數(shù)字互不相同且都不為0.若從它的百位、十位、個位上的數(shù)字中任意選擇兩個數(shù)字組成6個不同的兩位數(shù).若這6個兩位數(shù)的和等于這個三位數(shù)本身,則稱這樣的三位數(shù)F為“友好數(shù)”,例如:132是“友好數(shù)”.
一個三位正整數(shù)P,各個數(shù)位上的數(shù)字互不相同且都不為0,若它的十位數(shù)字等于百位數(shù)字與個位數(shù)字的和,則稱這樣的三位數(shù)P為“和平數(shù)”;
①直接判斷123是不是“友好數(shù)”?
②直接寫出共有 個“和平數(shù)”;
③通過列方程的方法求出既是“和平數(shù)”又是“友好數(shù)”的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知PA=PB=PC=2,∠BPC=120°,PA∥BC.以AB、PB為邊作平行四邊形ABPD,連接CD,則CD的長為( 。
A. 2B. 2C. +1D. ﹣1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com