【題目】如圖,已知,矩形ABCD中,F是對角線BD上一點,以F為圓心,FB為半徑作圓與邊AD相切于E,邊AB與圓F交于另一點G.
(1)若四邊形BGEF是菱形,求證:∠EFD=60o;
(2)若AB=15,AD=36,求AE的長;
(3)若BD與圓F交于另一點H,求證:.
【答案】(1)60°;(2)AE=10;(3)詳見解析
【解析】
(1)根據(jù)菱形的性質(zhì)得到△GEF和△BGF都是等邊三角形,根據(jù)等邊三角形的性質(zhì)計算,得到答案;
(2)根據(jù)勾股定理求出BD,由△DEF∽△DAB,根據(jù)相似三角形的性質(zhì)列出比例式,計算即可;
(3)連BE,EH,分別證明△AGE∽△EHB和△DEH∽△DBE,根據(jù)相似三角形的性質(zhì)證明結(jié)論.
解:(1)在菱形BGEF中,BG=GE=EF=FB
∵FG=FE=FB
∴△GEF和△BGF都是等邊三角形,
∴∠EFD=180°-60°-60°=60°;
(2)∵AB=15,AD=36,
∴DB=39
∵△DEF∽△DAB;設(shè)EF=BF=r,設(shè)AE=x,
∴
解得:
∴AE=10
(3)連BE,EH,
∵BH為直徑,
∴∠BEH=90°,
∴∠BEH=∠EAG,
∵四邊形GBHE是圓內(nèi)接四邊形,
∴∠BHE=∠EGA,
∴△AGE∽△EHB,
∴
∵AD是圓的切線,
∴∠DEH=∠DBE,又∠EDH=∠BDE,
∴△DEH∽△DBE,
∴,
∴即.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家和地方政府為了提高農(nóng)民種糧的積極性,每畝地每年發(fā)放種糧補貼120元.種糧大戶老王今年種了150畝地,計劃明年再承租50~150畝土地種糧以增加收入,考慮各種因素,預(yù)計明年每畝種糧成本y(元)與種糧面積x(畝)之間的函數(shù)關(guān)系如圖所示.
(1)今年老王種糧可獲得補貼_____________元;
(2)求y與x之間的函數(shù)關(guān)系式;
(3)若老王明年每畝的售糧收入能達(dá)到2100元,設(shè)老王明年種糧利潤為w(元).(種糧利潤=售糧收入-種糧成本+種糧補貼)
①求老王明年種糧利潤w(元)與種糧面積x(畝)之間的函數(shù)關(guān)系式;
②當(dāng)種糧面積為多少畝時,老王明年種糧利潤最高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王、小張和小梅打算各自隨機(jī)選擇本周六的上午或下午去高郵湖的湖上花海去踏青郊游.
(1)小王和小張都在本周六上午去踏青郊游的概率為_______;
(2)求他們?nèi)嗽谕粋半天去踏青郊游的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點D、E分別在△ACD的邊AB和AC上,已知DE∥BC,DE=DB.
(1)請用直尺和圓規(guī)在圖中畫出點D和點E(保留作圖痕跡,不要求寫作法),并證明所作的線段DE是符合題目要求的;
(2)若AB=7,BC=3,請求出DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是一組有規(guī)律的圖案,第1個圖案由4個基礎(chǔ)圖形組成,第2個圖案由7個基礎(chǔ)圖形組成,……,則組成第4個圖案的基礎(chǔ)圖形的個數(shù)為( ).
A. 11B. 12C. 13D. 14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由7個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體( 。
A. 主視圖改變,俯視圖改變 B. 左視圖改變,俯視圖改變
C. 俯視圖不變,左視圖改變 D. 主視圖不變,左視圖不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,地面BD上兩根等長立柱AB,CD之間懸掛一根近似成拋物線y= x2﹣x+3的繩子.
(1)求繩子最低點離地面的距離;
(2)因?qū)嶋H需要,在離AB為3米的位置處用一根立柱MN撐起繩子(如圖2),使左邊拋物線F1的最低點距MN為1米,離地面1.8米,求MN的長;
(3)將立柱MN的長度提升為3米,通過調(diào)整MN的位置,使拋物線F2對應(yīng)函數(shù)的二次項系數(shù)始終為,設(shè)MN離AB的距離為m,拋物線F2的頂點離地面距離為k,當(dāng)2≤k≤2.5時,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB<AD,∠D=30°,CD=4,以AB為直徑的⊙O交BC于點E,則陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=-x2+mx+n與x軸交于點A,B(A在B的左側(cè)).
(1)拋物線的對稱軸為直線x=-3,AB=4.求拋物線的表達(dá)式;
(2)平移(1)中的拋物線,使平移后的拋物線經(jīng)過點O,且與x正半軸交于點C,記平移后的拋物線頂點為P,若△OCP是等腰直角三角形,求點P的坐標(biāo);
(3)當(dāng)m=4時,拋物線上有兩點M(x1,y1)和N(x2,y2),若x1<2,x2>2,x1+x2>4,試判斷y1與y2的大小,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com