【題目】如圖,直角梯形ABCD中,ADBCABBCAD4,將腰CDD為中心逆時(shí)針旋轉(zhuǎn)90°DE,連結(jié)AE、CE,ADE的面積為12,則BC的長(zhǎng)為_____

【答案】10

【解析】

過(guò)D點(diǎn)作DFBC,垂足為F,過(guò)E點(diǎn)作EGAD,交AD的延長(zhǎng)線(xiàn)與G點(diǎn),由旋轉(zhuǎn)的性質(zhì)可知CDF≌△EDG,從而有CFEG,由ADE的面積可求EG,得出CF的長(zhǎng),由矩形的性質(zhì)得BFAD,根據(jù)BCBF+CF求解.

解:過(guò)D點(diǎn)作DFBC,垂足為F,過(guò)E點(diǎn)作EGAD,交AD的延長(zhǎng)線(xiàn)與G點(diǎn),

由旋轉(zhuǎn)的性質(zhì)可知CDED,

∵∠EDG+CDG=∠CDG+FDC90°,

∴∠EDG=∠FDC,又∠DFC=∠G90°,

∴△CDF≌△EDG,

CFEG,

SADEAD×EG12,AD4,

EG6,則CFEG6,

依題意得四邊形ABFD為矩形,∴BFAD4,

BCBF+CF4+610

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是等腰直角三角形,,為邊上一點(diǎn),且,連結(jié),過(guò)點(diǎn)于點(diǎn),交于點(diǎn).,則的長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,AB=AC≠BC,點(diǎn)D和點(diǎn)A在直線(xiàn)BC的同側(cè),BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,連接AD,求∠ADB的度數(shù).(不必解答)

(1)小聰先從特殊問(wèn)題開(kāi)始研究,當(dāng)α=90°,β=30°時(shí),利用軸對(duì)稱(chēng)知識(shí),以AB為對(duì)稱(chēng)軸構(gòu)造△ABD的軸對(duì)稱(chēng)圖形△ABD′,連接CD′(如圖2),然后利用α=90°,β=30°以及等邊三角形等相關(guān)知識(shí)便可解決這個(gè)問(wèn)題.

請(qǐng)結(jié)合小聰研究問(wèn)題的過(guò)程和思路,在這種特殊情況下填空:△D′BC的形狀是   三角形;∠ADB的度數(shù)為   

(2)在原問(wèn)題中,當(dāng)∠DBC<∠ABC(如圖1)時(shí),請(qǐng)計(jì)算∠ADB的度數(shù);

(3)在原問(wèn)題中,過(guò)點(diǎn)A作直線(xiàn)AE⊥BD,交直線(xiàn)BDE,其他條件不變?nèi)?/span>BC=7,AD=2.請(qǐng)直接寫(xiě)出線(xiàn)段BE的長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,點(diǎn)C是圓上任意一點(diǎn),點(diǎn)DAC中點(diǎn),ODAC于點(diǎn)E,BDAC于點(diǎn)F,若BF1.25DF,則tanABD的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的O分別交BC,AC于點(diǎn)D,E,連結(jié)EB,交OD于點(diǎn)F

1)求證:ODBE

2)若DE=AB=6,求AE的長(zhǎng).

3)若CDE的面積是OBF面積的,求線(xiàn)段BCAC長(zhǎng)度之間的等量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作與證明:如圖1,把一個(gè)含45°角的直角三角板ECF和一個(gè)正方形ABCD擺放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)C重合,點(diǎn)E、F分別在正方形的邊CB、CD上,連接AF.取AF中點(diǎn)M,EF的中點(diǎn)N,連接MD、MN.

(1)連接AE,求證:AEF是等腰三角形;

猜想與發(fā)現(xiàn):

(2)在(1)的條件下,請(qǐng)判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.

結(jié)論1:DM、MN的數(shù)量關(guān)系是 ;

結(jié)論2:DM、MN的位置關(guān)系是

拓展與探究:

(3)如圖2,將圖1中的直角三角板ECF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個(gè)結(jié)論還成立嗎?若成立,請(qǐng)加以證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為6的正方形ABCD中,點(diǎn)E、F、G分別在邊AB、AD、CD上,EGBF交于點(diǎn)I,AE=2,BF=EG,DG>AE,則DI的最小值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三角形ABC中,AB=24,AC=18,D是AC上一點(diǎn),AD=12,在AB上取一點(diǎn)E,使A、D、E三點(diǎn)組成的三角形與ABC相似,則AE=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】凱里市某文具店某種型號(hào)的計(jì)算器每只進(jìn)價(jià)12元,售價(jià)20元,多買(mǎi)優(yōu)惠,優(yōu)勢(shì)方法是:凡是一次買(mǎi)10只以上的,每多買(mǎi)一只,所買(mǎi)的全部計(jì)算器每只就降價(jià)0.1元,例如:某人買(mǎi)18只計(jì)算器,于是每只降價(jià)0.1×(18﹣10)=0.8(元),因此所買(mǎi)的18只計(jì)算器都按每只19.2元的價(jià)格購(gòu)買(mǎi),但是每只計(jì)算器的最低售價(jià)為16元.

(1)求一次至少購(gòu)買(mǎi)多少只計(jì)算器,才能以最低價(jià)購(gòu)買(mǎi)?

(2)求寫(xiě)出該文具店一次銷(xiāo)售x(x10)只時(shí),所獲利潤(rùn)y(元)與x(只)之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

(3)一天,甲顧客購(gòu)買(mǎi)了46只,乙顧客購(gòu)買(mǎi)了50只,店主發(fā)現(xiàn)賣(mài)46只賺的錢(qián)反而比賣(mài)50只賺的錢(qián)多,請(qǐng)你說(shuō)明發(fā)生這一現(xiàn)象的原因;當(dāng)10x50時(shí),為了獲得最大利潤(rùn),店家一次應(yīng)賣(mài)多少只?這時(shí)的售價(jià)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案