【題目】如圖,拋物線y=﹣ x2+bx+c與y軸交于點(diǎn)C,與x軸交于A、B兩點(diǎn)(點(diǎn)A在原點(diǎn)左側(cè),點(diǎn)B在原點(diǎn)右側(cè)),且∠ACB=90°,tan∠BAC= . ①求拋物線的解析式;
②若拋物線頂點(diǎn)為P,求四邊形APCB的面積.
【答案】解:①令x=0則y=﹣ x2+bx+c=c, ∴C(0,c),
∵tan∠BAC= ,
∴A(﹣2c,0),
∠ACB=90°,
∴∠BCO=∠BAC,
∴OB= OC= c,
∴B( c,0),
把A(﹣2c,0),B( c,0)代入y=﹣ x2+bx+c=c得, ,
解得: ,
求拋物線的解析式為y=﹣ x2﹣ x+ ;
②y=﹣ x2﹣ x+ =﹣ (x+ )2+ ,
∴P(﹣ , ),
令﹣ x2﹣ x+ =0,解得:x1=﹣1,x2= ,
∴A(﹣1,0),B( ,0)
連接AP,PC,CB,PO,則四邊形APCB的面積=S△AOP+S△POC+S△COB= ×1× + × × + × × =
【解析】①由y=﹣ x2+bx+c=c,可求得C(0,c),由tan∠BAC= ,可設(shè)A(﹣2c,0),B( c,0),把A(﹣2c,0),B( c,0)代入y=﹣ x2+bx+c=c求得b,c,即可求得求拋物線的解析式; ②解方程﹣ x2﹣ x+ =0可求得A,B點(diǎn)的坐標(biāo),由于四邊形APCB的面積=S△AOP+S△POC+S△COB , 根據(jù)三角形的面積公式即可求得結(jié)論.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解拋物線與坐標(biāo)軸的交點(diǎn)(一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).),還要掌握解直角三角形(解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法))的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(m,n),且滿足m-2+(n-2)2=0,過(guò)A作AB⊥y軸,垂足為B.
(1)求A點(diǎn)坐標(biāo);
(2)如圖1,分別以AB,AO為邊作等邊△ABC和△AOD,試判定線段AC和DC的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由;
(3)如圖2,過(guò)A作AE⊥x軸,垂足為E,點(diǎn)F、G分別為線段OE、AE上的兩個(gè)動(dòng)點(diǎn) (不與端點(diǎn)重合),滿足∠FBG=45°,設(shè)OF=a,AG=b,FG=c,試探究的值是 否為定值?如果是,直接寫(xiě)出此定值:如果不是,請(qǐng)舉例說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E,F(xiàn)分別是矩形ABCD的邊AD,AB上的點(diǎn),若EF=EC,且EF⊥EC.
(1)求證:△AEF≌△DCE;
(2)若CD=1,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓柱形玻璃杯高為12cm、底面周長(zhǎng)為18cm,在杯內(nèi)離杯底4cm的點(diǎn)C
處有一滴蜂蜜,此時(shí)一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對(duì)的點(diǎn)A處,則螞蟻到達(dá)蜂蜜的最
短距離為 ▲ cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,∠AOB是平角,OM、ON分別是∠AOC、∠BOD 的平分線.
(1)知∠AOC=40°,∠BOD=60°,求∠MON的度數(shù);
(2)知∠COD=90°,求出∠MON的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】材料:
一般地,n個(gè)相同的因數(shù)a相乘:記為.如23=8,此時(shí),3叫做以2為底8的對(duì)數(shù),記為log28(即log28=3).
一般地,若an=b(a>0且a≠1,b>0),則n叫做以a為底b的對(duì)數(shù),記為logab(即logab=n).如34=81,則4叫做以3為底81的對(duì)數(shù),記為log381(即log381=4).
問(wèn)題:
(1)計(jì)算以下各對(duì)數(shù)的值:log24=______,log216=______,log264=______.
(2)觀察(1)中三數(shù)4、16、64之間滿足怎樣的關(guān)系式為______log24、log216、log264之間又滿足怎樣的關(guān)系式:______
(3)由(2)的結(jié)果,你能歸納出一個(gè)一般性的結(jié)論嗎?logaM+logaN=______(a>o且a≠1,M>0,N>0).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘漁船位于燈塔P的北偏東30°方向,距離燈塔18海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東55°方向上的B處,此時(shí)漁船與燈塔P的距離約為海里(結(jié)果取整數(shù))(參考數(shù)據(jù):sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,DE是△ABC的中位線,F(xiàn)是DE的中點(diǎn),CF的延長(zhǎng)線交AB于點(diǎn)G,若△CEF的面積為12cm2,則S△DGF的值為( )
A.4cm2 B.6cm2 C.8cm2 D.9cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為3,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.若AE=1,則FM的長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com