【題目】如圖,△ABC,A、B兩個(gè)頂點(diǎn)在軸的上方,點(diǎn)C的坐標(biāo)是(1,0).以點(diǎn)C為位似中心,x軸的下方作ABC的位似圖形,并把ABC的邊長(zhǎng)放大到原來(lái)的2,設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的橫坐標(biāo)是a,則點(diǎn)B的橫坐標(biāo)是( )

A. B. C. D.

【答案】D

【解析】

ABC的邊長(zhǎng)是△ABC的邊長(zhǎng)的2倍,過(guò)B點(diǎn)和B′點(diǎn)作x軸的垂線(xiàn),垂足分別是DE,因?yàn)辄c(diǎn)B′的橫坐標(biāo)是a,則EC=a+1.可求DC=(a+1),則B點(diǎn)的橫坐標(biāo)是-(a+1)-1= (a+3).

過(guò)B點(diǎn)和B′點(diǎn)作x軸的垂線(xiàn),垂足分別是DE

∵點(diǎn)B′的橫坐標(biāo)是a,點(diǎn)C的坐標(biāo)是(-1,0).

EC=a+1

又∵△ABC的邊長(zhǎng)是△ABC的邊長(zhǎng)的2

DC=(a+1)

DO=(a+3)

B點(diǎn)的橫坐標(biāo)是 (a+3)

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在ABC中,∠BAC=130°,AB的垂直平分線(xiàn)MEBC于點(diǎn)M,交AB于點(diǎn)EAC的垂直平分線(xiàn)NFBC于點(diǎn)N,交AC于點(diǎn)F,則∠MAN為(

A.80°B.70°C.60°D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2011?菏澤)如圖為拋物線(xiàn)y=ax2+bx+c的圖象,A、B、C為拋物線(xiàn)與坐標(biāo)軸的交點(diǎn),且OA=OC=1,則下列關(guān)系中正確的是( 。

A. a+b=﹣1 B. a﹣b=﹣1

C. b<2a D. ac<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為美化小區(qū)環(huán)境,某小區(qū)有一塊面積為30m2的等腰三角形草地,測(cè)得其一邊長(zhǎng)為10m,現(xiàn)要給這塊三角形草地圍上白色的低矮柵欄,則其長(zhǎng)度為 m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,埃航客機(jī)失事后,國(guó)家主席親自發(fā)電進(jìn)行慰問(wèn),埃及政府出動(dòng)了多艘艦船和飛機(jī)進(jìn)行搜救,其中一艘潛艇在海面下米的點(diǎn)處測(cè)得俯角為的前下方海底有黑匣子信號(hào)發(fā)出,繼續(xù)沿原方向直線(xiàn)航行米后到達(dá)點(diǎn),在處測(cè)得俯角為的前下方海底有黑匣子信號(hào)發(fā)出,求海底黑匣子點(diǎn)距離海面的深度(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:若m22mn+2n28n+16=0,求mn的值.

解:∵m22mn+2n28n+16=0,∴(mn2=0,(n42=0

∴(m22mn+n2+n28n+16=0n=4,m=4

∴(mn2+n42=0

根據(jù)你的觀察,探究下面的問(wèn)題:

1)已知x22xy+2y2+6y+9=0,求xy的值;

2)已知ABC的三邊長(zhǎng)a、b、c都是正整數(shù),且滿(mǎn)足a2+b210a12b+61=0,求ABC的最大邊c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC在方格紙中

(1)請(qǐng)?jiān)诜礁窦埳辖⑵矫嬷苯亲鴺?biāo)系,使A(2,3),C(6,2),并求出B點(diǎn)坐標(biāo);

(2)以原點(diǎn)O為位似中心,相似比為2,在第一象限內(nèi)將ABC放大,畫(huà)出放大后的圖形ABC;

(3)計(jì)算ABC的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在函數(shù)y1=(x<0)和y2=(x>0)的圖象上,分別有A、B兩點(diǎn),若ABx軸,交y軸于點(diǎn)C,且OAOB,SAOC=,SBOC=,則線(xiàn)段AB的長(zhǎng)度=__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD⊙O的直徑,AB=AC,ADBC于點(diǎn)EAE=2,ED=4,

(1)求證:△ABE∽△ADB

(2)AB的長(zhǎng);

(3)延長(zhǎng)DBF,使得BF=BO,連接FA,試判斷直線(xiàn)FA⊙O的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案