【題目】如圖所示,拋物線yax2+bx+cx軸交于A、B兩點(diǎn),A(﹣5,0),與y軸交于C0,﹣5),并且對稱軸x=﹣3

1)求拋物線的解析式;

2Px軸上方的拋物線上,過P的直線yx+m與直線AC交于點(diǎn)M,與y軸交于點(diǎn)N,求PM+MN的最大值;

3)點(diǎn)D為拋物線對稱軸上一點(diǎn),

①當(dāng)△ACD是以AC為直角邊的直角三角形時(shí),求D點(diǎn)坐標(biāo);

②若△ACD是銳角三角形,求點(diǎn)D的縱坐標(biāo)的取值范圍.

【答案】1y=﹣x26x5;(2PM+MN的最大值為9;(3)①點(diǎn)D的坐標(biāo)為(﹣3,2)或(﹣3,﹣8);②D的縱坐標(biāo)的取值范圍是﹣8y<﹣61y2

【解析】

1)利用待定系數(shù)法求解可得;

2)易得AC解析式為,作軸,交ACH,作軸,設(shè),由MN的解析式為,據(jù)此得,再根據(jù)及二次函數(shù)的性質(zhì)進(jìn)一步求解可得;

3)①設(shè),先利用兩點(diǎn)間的距離公式得到,再討論:當(dāng)ACD是以AC為直角邊、CD為斜邊和以AC為直角邊、AD為斜邊的直角三角形時(shí),分別解方程求出y即可得到對應(yīng)的D點(diǎn)坐標(biāo);

②由于當(dāng)ACD是以AC為斜邊的直角三角形時(shí),,解方程得到y的值,然后結(jié)合圖形可確定ACD是銳角三角形時(shí),點(diǎn)D縱坐標(biāo)的取值范圍.

1)∵拋物線過,對稱軸為直線

∴點(diǎn)B坐標(biāo)為

可設(shè)拋物線解析式為

將點(diǎn)代入得

解得

則拋物線的解析式為

故拋物線的解析式為;

2)設(shè)P點(diǎn)坐標(biāo)為

∴直線AC解析式為

過點(diǎn)P軸,交ACH,作PGy軸于G

MN的解析式為

由二次函數(shù)的性質(zhì)可知,當(dāng)時(shí),取得最大值,最大值為

的最大值為;

3)①設(shè)

當(dāng)ACD是以AC為直角邊、CD為斜邊的直角三角形時(shí)

,即

解得,則此時(shí)

當(dāng)ACD是以AC為直角邊、AD為斜邊的直角三角形時(shí)

,即

解得,則此時(shí)點(diǎn)

綜上,點(diǎn)D的坐標(biāo)為;

②當(dāng)ACD是以AC為斜邊的直角三角形時(shí)

,即

整理得

解得

故當(dāng)ACD是銳角三角形時(shí),點(diǎn)D縱坐標(biāo)的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】移動通信公司建設(shè)的鋼架信號塔(如圖1),它的一個(gè)側(cè)面的示意圖(如圖2).CD是等腰三角形ABC底邊上的高,分別過點(diǎn)A、點(diǎn)B作兩腰的垂線段,垂足分別為B1A1,再過A1B1分別作兩腰的垂線段所得的垂足為B2A2,用同樣的作法依次得到垂足B3A3,….若AB3米,sinα,則水平鋼條A2B2的長度為( 。

A. B. 2C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一輛單車放在水平的地面上,車把頭下方處與坐墊下方處在平行于地面的同一水平線上,之間的距離約為,現(xiàn)測得,的夾角分別為,若點(diǎn)到地面的距離,坐墊中軸處與點(diǎn)的距離,求點(diǎn)到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2+bx+c(a0)上部分點(diǎn)的橫坐標(biāo)x與縱坐標(biāo)y的對應(yīng)值如下表:

x

3

2

1

0

1

2

3

y

4

4

0

(1)求該拋物線的表達(dá)式;

(2)已知點(diǎn)E(4 y)是該拋物線上的點(diǎn),點(diǎn)E關(guān)于拋物線的對稱軸對稱的點(diǎn)為點(diǎn)F,求點(diǎn)E和點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】焦作市教育局為調(diào)查全市教師的運(yùn)動情況,結(jié)合現(xiàn)今流行的“微信運(yùn)動”,隨機(jī)調(diào)查了本市名老師某日“微信運(yùn)動”中的步數(shù)情況進(jìn)行統(tǒng)計(jì)整理,繪制了如下的統(tǒng)計(jì)圖表:

步數(shù)

頻數(shù)

頻率

請根據(jù)以上信息,解答下列問題:

1)寫出的值,并補(bǔ)全頻數(shù)分布直方圖;

2)本市約有名教師,結(jié)合調(diào)查的數(shù)據(jù)估計(jì)日行走步數(shù)超過步(包含步)的教師有多少名?

3)若在被調(diào)查的教師中,選取日行走步數(shù)超過步(包含步)的兩名教師與大家分享心得,求被選取的兩名教師恰好都在步(包含步)以上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:如圖1,在△ABC中,當(dāng)DEBC時(shí)可以得到三組成比例線段:① ;② ;③ .反之,當(dāng)對應(yīng)線段程比例時(shí)也可以推出DEBC

理解運(yùn)用:三角形的內(nèi)接四邊形是指頂點(diǎn)在三角形各邊上的四邊形.

1)如圖2,已知矩形DEFG是△ABC的一個(gè)內(nèi)接矩形,將矩形DEFG沿CB方向向左平移得矩形PBQH,其中頂點(diǎn)D、E、FG的對應(yīng)點(diǎn)分別為P、BQ、H,在圖2中畫出平移后的圖形;

2)在(1)所得的圖形中,連接CH并延長交BP的延長線于點(diǎn)R,連接AR.求證:ARBC

3)如圖3,某小區(qū)有一塊三角形空地,已知△ABC空地的邊AB=400米,BC=600米,∠ABC=45°;準(zhǔn)備在△ABC內(nèi)建一個(gè)內(nèi)接矩形廣場DEFG(點(diǎn)EF在邊BC上,點(diǎn)DG分別在邊ABAC上),三角形其余部分進(jìn)行植被綠化,按要求欲使矩形DEFG的對角線EG最短,請?jiān)趥溆脠D中畫出使對角線EG最短的矩形.并求出對角線EG的最短距離(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長為半徑作,交射線OB于點(diǎn)D,連接CD;

2)分別以點(diǎn)CD為圓心,CD長為半徑作弧,交于點(diǎn)M,N

3)連接OM,MN

根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯(cuò)誤的是(

A. ∠COM=∠CODB. OM=MN,則∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知邊長為4的正方形鋼板有一個(gè)角銹蝕,其中AF2BF1,為了合理利用這塊鋼板.將在五邊形EABCD內(nèi)截取一個(gè)矩形塊MDNP,使點(diǎn)PAB上,且要求面積最大,求鋼板的最大利用率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,只改變正方形的形狀,得到四邊形,且,則四邊形與正方形的面積的比是( 。

A.1:1B.2:3C.:2D.3:4

查看答案和解析>>

同步練習(xí)冊答案