【題目】閱讀下面的材料,先完成閱讀填空,再按要求答題:
(1)閱讀填空
sin30°= ,cos30°= ,則sin230°+cos230°= ;①
sin45°= ,cos45°= ,則sin245°+cos245°= ;②
sin60°= ,cos60°= ,則sin260°+cos260°= .③

觀察上述等式,猜想:對(duì)任意銳角A,都有sin2A+cos2A= .④
(2)如圖,在銳角三角形ABC中,利用三角函數(shù)的定義及勾股定理對(duì)∠A證明你的猜想;

(3)已知:∠A為銳角(cosA>0)且sinA= ,求cosA.

【答案】
(1)1;1;1;1
(2)

解:如圖,過(guò)點(diǎn)B作BD⊥AC于D,則∠ADB=90°.

∵sinA= ,cosA= ,

∴sin2A+cos2A=( 2+( 2=

∵∠ADB=90°,

∴BD2+AD2=AB2,

∴sin2A+cos2A=1


(3)

解:∵sinA= ,sin2A+cos2A=1,∠A為銳角,

∴cosA= =


【解析】解:∵sin30°= ,cos30°= ,
∴sin230°+cos230°=( 2+( 2= + =1;①
∵sin45°= ,cos45°= ,
∴sin245°+cos245°=( 2+( 2= + =1;②
∵sin60°= ,cos60°= ,
∴sin260°+cos260°=( 2+( 2= + =1.③
觀察上述等式,猜想:對(duì)任意銳角A,都有sin2A+cos2A=1.④
【考點(diǎn)精析】利用勾股定理的概念和同角三角函數(shù)的關(guān)系(倒數(shù)、平方和商)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;各銳角三角函數(shù)之間的關(guān)系:平方關(guān)系(sin2A+cos2A=1);倒數(shù)關(guān)系(tanAtan(90°—A)=1);弦切關(guān)系(tanA=sinA/cosA ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,頂點(diǎn)為(1,4)的拋物線y=ax2+bx+c與直線y= x+n交于點(diǎn)A(2,2),直線y= x+n與y軸交于點(diǎn)B與x軸交于點(diǎn)C

(1)求n的值及拋物線的解析式
(2)P為拋物線上的點(diǎn),點(diǎn)P關(guān)于直線AB的對(duì)稱軸點(diǎn)在x軸上,求點(diǎn)P的坐標(biāo)
(3)點(diǎn)D為x軸上方拋物線上的一點(diǎn),點(diǎn)E為軸上一點(diǎn),以A、B、E、D為頂點(diǎn)的四邊為平行四邊形時(shí),直接寫(xiě)出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O是一點(diǎn),過(guò)點(diǎn)B作⊙O的切線,與AC延長(zhǎng)線交于點(diǎn)D,連接BC,OE//BC交⊙O于點(diǎn)E,連接BE交AC于點(diǎn)H.

(1)求證:BE平分∠ABC;
(2)連接OD,若BH=BD=2,求OD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2014年3月31日是全國(guó)中小學(xué)生安全教育日,某校全體學(xué)生參加了“珍愛(ài)生命,預(yù)防溺水”專(zhuān)題活動(dòng),學(xué)習(xí)了游泳“五不準(zhǔn)”,為了了解學(xué)生對(duì)“五不準(zhǔn)”的知曉情況,隨機(jī)抽取了200名學(xué)生作調(diào)查,請(qǐng)根據(jù)下面兩個(gè)不完整的統(tǒng)計(jì)圖解答問(wèn)題:
(1)求在這次調(diào)查中,“能答5條”人數(shù)的百分比和“僅能答3條”的人數(shù);
(2)若該校共有2000名學(xué)生,估計(jì)該校能答3條不準(zhǔn)以上(含3條)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,所有正三角形的一邊平行于x軸,一頂點(diǎn)在y軸上.從內(nèi)到外,它們的邊長(zhǎng)依次為2,4,6,8,…,頂點(diǎn)依次用A1、A2、A3、A4…表示,其中A1A2與x軸、底邊A1A2與A4A5、A4A5與A7A8、…均相距一個(gè)單位,則頂點(diǎn)A3的坐標(biāo)是 , A92的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2013年3月28日是全國(guó)中小學(xué)生安全教育日,某學(xué)校為加強(qiáng)學(xué)生的安全意識(shí),組織了全校1500名學(xué)生參加安全知識(shí)競(jìng)賽,從中抽取了部分學(xué)生成績(jī)(得分取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)根據(jù)尚未完成的頻率分布表和頻數(shù)分布直方圖,解答下列問(wèn)題: 頻率分布表

分?jǐn)?shù)段

頻數(shù)

頻率

50.5﹣60.5

16

0.08

60.5﹣70.5

40

0.2

70.5﹣80.5

50

0.25

80.5﹣90.5

m

0.35

90.5﹣100.5

24

n


(1)這次抽取了名學(xué)生的競(jìng)賽成績(jī)進(jìn)行統(tǒng)計(jì),其中:m= , n=;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若成績(jī)?cè)?0分以下(含70分)的學(xué)生為安全意識(shí)不強(qiáng),有待進(jìn)一步加強(qiáng)安全教育,則該校安全意識(shí)不強(qiáng)的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從3,﹣1, ,1,﹣3這5個(gè)數(shù)中,隨機(jī)抽取一個(gè)數(shù)記為a,若數(shù)a使關(guān)于x的不等式組 無(wú)解,且使關(guān)于x的分式方程 =﹣1有整數(shù)解,那么這5個(gè)數(shù)中所有滿足條件的a的值之積是(
A.
B.﹣2
C.﹣3
D.﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,直線y=kx+n(k≠0)經(jīng)過(guò)B,C兩點(diǎn),已知A(1,0),C(0,3),且BC=5.

(1)分別求直線BC和拋物線的解析式(關(guān)系式);
(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得以B,C,P三點(diǎn)為頂點(diǎn)的三角形是直角三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某批發(fā)市場(chǎng)有中招考試文具套裝,其中A品牌的批發(fā)價(jià)是每套20元,B品牌的批發(fā)價(jià)是每套25元,小王需購(gòu)買(mǎi)A、B兩種品牌的文具套裝共1000套.
(1)若小王按需購(gòu)買(mǎi)A、B兩種品牌文具套裝共用22000元,則各購(gòu)買(mǎi)多少套?
(2)憑會(huì)員卡在此批發(fā)市場(chǎng)購(gòu)買(mǎi)商品可以獲得8折優(yōu)惠,會(huì)員卡費(fèi)用為500元.若小王購(gòu)買(mǎi)會(huì)員卡并用此卡按需購(gòu)買(mǎi)1000套文具套裝,共用了y元,設(shè)A品牌文具套裝買(mǎi)了x包,請(qǐng)求出y與x之間的函數(shù)關(guān)系式.
(3)若小王購(gòu)買(mǎi)會(huì)員卡并用此卡按需購(gòu)買(mǎi)1000套文具套裝,共用了20000元,他計(jì)劃在網(wǎng)店包郵銷(xiāo)售這兩種文具套裝,每套文具套裝小王需支付郵費(fèi)8元,若A品牌每套銷(xiāo)售價(jià)格比B品牌少5元,請(qǐng)你幫他計(jì)算,A品牌的文具套裝每套定價(jià)不低于多少元時(shí)才不虧本(運(yùn)算結(jié)果取整數(shù))?

查看答案和解析>>

同步練習(xí)冊(cè)答案