【題目】如圖,“和諧號(hào)”高鐵列車的小桌板收起時(shí),小桌板的支架底端與桌面頂端的距離OA=75厘米,且可以近似看作與地面垂直.展開小桌板使桌面保持水平,此時(shí)CB⊥AO,∠AOB=∠ACB=37°,且支架長OB與桌面寬BC的長度之和等于OA的長度.求小桌板桌面的寬度BC.(參考數(shù)據(jù), , )
【答案】小桌板桌面寬度BC的長為37.5厘米
【解析】試題分析:設(shè)BC=xcm,則OB=(75-x)cm, 將OD、BD、CD、AD結(jié)合三角函數(shù)依次表示出來,再由tan∠ACD=列方程,解出x.
試題解析:
解:設(shè)小桌板桌面寬度BC的長為 x cm,則支架OB的長為(75-x)cm.
延長CB交OA于點(diǎn)D,由題意知,CD⊥OA ,
在Rt△OBD中,OD=OB cos37°=0.8(75-x)=60-0.8x ,
BD=OB sin37°=0.6(75-x)=45-0.6x ,
所以CD=CB+BD=45+0.4x,AD=15+0.8x,
所以tan37°=,即 ,
解得,x =37.5.
答:小桌板桌面寬度BC的長為37.5cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知正方形ABCD的邊長為1,點(diǎn)P是AD邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)A關(guān)于直線BP的對(duì)稱點(diǎn)是點(diǎn)Q,連接PQ、DQ、CQ、BQ,設(shè)AP=x.
(1)BQ+DQ的最小值是_______,此時(shí)x的值是_______;
(2)如圖②,若PQ的延長線交CD邊于點(diǎn)E,并且∠CQD=90°.
①求證:點(diǎn)E是CD的中點(diǎn); ②求x的值.
(3)若點(diǎn)P是射線AD上的一個(gè)動(dòng)點(diǎn),請(qǐng)直接寫出當(dāng)△CDQ為等腰三角形時(shí)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某辦公樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時(shí),辦公樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線與地面夾角是45°時(shí),辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線上).
(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請(qǐng)你求出A,E之間的距離.
(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD與矩形EFGH在直線的同側(cè),邊AD,EH在直線上,且AD=5 cm,EH=4 cm, EF=3 cm.保持正方形ABCD不動(dòng),將矩形EFGH沿直線左右移動(dòng),連接BF、CG,則BF+CG的最小值為( )
A. 4B. C. D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn),如果這三種情況是等可能的,當(dāng)三輛汽車經(jīng)過這個(gè)十字路口時(shí):
(1)請(qǐng)你用列表或畫樹狀圖的方法,表示出所有可能的結(jié)果;
(2)三輛車全部同向而行的概率是 ,至少有兩輛車向左轉(zhuǎn)的概率是 ;
(3)由于十字路口右拐彎處是通往新建經(jīng)濟(jì)開發(fā)區(qū)的,因此交管部門在汽車行駛高峰時(shí)段對(duì)車流量作了統(tǒng)計(jì),發(fā)現(xiàn)汽車在此十字路口向右轉(zhuǎn)的頻率為,向左轉(zhuǎn)和直行的頻率均為.目前在此路口,汽車左轉(zhuǎn)、右轉(zhuǎn)、直行的綠燈亮的時(shí)間分別為30秒,在綠燈亮總時(shí)間不變的條件下,為了緩解交通擁擠,請(qǐng)你用統(tǒng)計(jì)的知識(shí)對(duì)此路口三個(gè)方向的綠燈亮的時(shí)間做出合理的調(diào)整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點(diǎn)是邊上的一動(dòng)點(diǎn),點(diǎn)是上一點(diǎn),且,、相交于點(diǎn).
(1)求證:;
(2)求的度數(shù)
(3)若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中,.
(1)操作發(fā)現(xiàn)
①固定,使繞點(diǎn)C旋轉(zhuǎn).當(dāng)點(diǎn)D恰好落在AB邊上時(shí)(如圖2);線段DE與AC的位置關(guān)系是________,請(qǐng)證明;
②設(shè)的面積為,的面積為,則與的數(shù)量關(guān)系是________.
(2)猜想論證
當(dāng)繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中與的數(shù)量關(guān)系仍然成立,請(qǐng)你分別作出和中BC、CE邊上的高,并由此證明小明的猜想.
(3)拓展探究
己知,點(diǎn)D是其角平分線上一點(diǎn),,交BC于點(diǎn)E(如圖4),請(qǐng)問在射線BA上是否存在點(diǎn)F,使,若存在,請(qǐng)直接寫出符合條件的點(diǎn)F的個(gè)數(shù),若不存在,請(qǐng)說明理由.
圖1 圖2
圖3 圖4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ACDE是證明勾股定理時(shí)用到的一個(gè)圖形,a、b、c是Rt△ABC和Rt△BED邊長,易知AE=c,這時(shí)我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.
請(qǐng)解決下列問題:
寫出一個(gè)“勾系一元二次方程”;
求證:關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實(shí)數(shù)根;
若x=1是“勾系一元二次方程”ax+cx+b=0的一個(gè)根,且四邊形ACDE的周長是,求△ABC面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,,過C作軸于B.
(1)三角形ABC的面積_____________;
(2)如圖2,過B作交y軸于D,且AE,DE分別平分∠CAB,∠ODB,求∠AED的度數(shù);
(3)點(diǎn)P在y軸上,使得三角形ABC和三角形ACP的面積相等,直接寫出P點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com