【題目】如圖1,點O是正方形ABCD兩對角線的交點. 分別延長OD到點G,OC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn)角(0°< <360°)得到正方形,如圖2.
①在旋轉(zhuǎn)過程中,當(dāng)∠是直角時,求的度數(shù);(注明:當(dāng)直角邊為斜邊一半時,這條直角邊所對的銳角為30度)
②若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求長的最大值和此時的度數(shù),直接寫出結(jié)果不必說明理由.
圖1 圖2
【答案】(1)證明見解析;(2)①(1)30°或150°②AF′長的最大值是,此時α=315°.
【解析】(1)如圖1,延長ED交AG于點H.
∵O為正方形ABCD對角線的交點.∴OA=OD,OA⊥OD.
∵OG=OE,∴Rt△AOG≌Rt△DOE,∴∠AGO=∠DEO.
∵∠AGO+∠GAO=90°,∴∠DEO+∠GAO=90°,∴∠AHE=90°,即DE⊥AG.
(2)①在旋轉(zhuǎn)過程中,∠成為直角有以下兩種情況:
(i)α由0°增大到90°過程中,當(dāng)∠為直角時,
∵,∴在Rt△中, ,
∴∠∵OA⊥OD,∴∠DOG′=90°-∠=30°,即α=30°.
(ii)α由90°增大到180°過程中,當(dāng)∠為直角時,
同理可求的∠AOG′=30°,所以α=90°+∠=150°.
綜上,當(dāng)∠為直角時,α=30°或150°.
②AF′長的最大值是,此時α=315°.理由:當(dāng)AF′長的最大時,點F′在直線AC上,如圖所示:
∵AB=BC=CD=AD=1,∴AC=BD=,AO=OD=.
∴OE′=E′F′=2OD=.∴OF′=.∴AF′=AO+OF′=.
∵∠E′OF=45°∴旋轉(zhuǎn)角α=360°-45°=315°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,請在下列四個關(guān)系中,選出兩個恰當(dāng)?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)
關(guān)系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.
已知:在四邊形ABCD中, , ;
求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間,某商鋪經(jīng)營某種旅游紀(jì)念品.該商鋪第一次批發(fā)購進(jìn)該紀(jì)念品共花費3 000元,很快全部售完.接著,該商鋪第二次批發(fā)購進(jìn)該紀(jì)念品共花費9000元.已知第二次所購進(jìn)該紀(jì)念品的數(shù)量是第一次的2倍還多300個,第二次的進(jìn)價比第一次的進(jìn)價提高了20%.
(1)求第一次購進(jìn)該紀(jì)念品的進(jìn)價是多少元?
(2)若該紀(jì)念品的兩次售價均為9元/個,兩次所購紀(jì)念品全部售完后,求該商鋪兩次共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】企業(yè)舉行“愛心一日捐”活動,捐款金額分為五個檔次,分別是50元,100元,150元,200元,300元.宣傳小組隨機(jī)抽取部分捐款職工并統(tǒng)計了他們的捐款金額,繪制成兩個不完整的統(tǒng)計圖,請結(jié)合圖表中的信息解答下列問題:
(1)宣傳小組抽取的捐款人數(shù)為_____人,請補全條形統(tǒng)計圖;
(2)在扇形統(tǒng)計圖中,求100元所對應(yīng)扇形的圓心角的度數(shù);
(3)已知該企業(yè)共有500人參與本次捐款,請你估計捐款總額大約為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣ x+m(m>0)與x軸交于點C,與y軸交于點D,以CD為邊作矩形ANCD,點A在x軸上.雙曲線y= 經(jīng)過點B,與直線CD交于點E,則點E的坐標(biāo)為( )
A.( ,﹣ )
B.(4,﹣ )
C.( ,﹣ )
D.(6,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)癮低齡化問題已經(jīng)引起社會各界的高度關(guān)注,有關(guān)部門在全國范圍內(nèi)對12﹣35歲的網(wǎng)癮人群進(jìn)行了簡單的隨機(jī)抽樣調(diào)查,繪制出以下兩幅統(tǒng)計圖.
請根據(jù)圖中的信息,回答下列問題:
(1)這次抽樣調(diào)查中共調(diào)查了人;
(2)請補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中18﹣23歲部分的圓心角的度數(shù)是;
(4)據(jù)報道,目前我國12﹣35歲網(wǎng)癮人數(shù)約為2000萬,請估計其中12﹣23歲的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把矩形紙片ABCD沿對角線折疊,設(shè)重疊部分為△EBD,那么下列說法錯誤的是( )
A. △EBD是等腰三角形,EB=ED B. 折疊后∠ABE和∠C′BD一定相等
C. 折疊后得到的圖形是軸對稱圖形 D. △EBA和△EDC′一定是全等三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠B=30°,BC=12.
(1)用尺規(guī)作圖的方法作AB的垂直平分線MN,分別交BC、AB于點M、N(保留作圖痕跡,不要求寫作法);
(2)求第(1)題中的CM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個零件的形狀如圖所示,按規(guī)定這個零件中∠A和∠DBC都應(yīng)為直角,工人師傅量出了這個零件各邊尺寸,那么這個零件符合要求嗎?求出四邊形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com