【題目】在等邊△ABC中,點(diǎn)D是邊BC上一點(diǎn).作射線AD,點(diǎn)B關(guān)于射線AD的對(duì)稱點(diǎn)為點(diǎn)E.連接CE并延長(zhǎng),交射線AD于點(diǎn)F

1)如圖,連接AE

AEAC的數(shù)量關(guān)系是  ;

設(shè)∠BAF=a,用a表示∠BCF的大;

2)如圖,用等式表示線段AF,CF,EF之間的數(shù)量關(guān)系,并證明.

【答案】1)①AE=AC;BCF;(2)結(jié)論:AF=EF+CF.證明見解析.

【解析】

1)①可得AE=AB,AB=AC,則AE=AC;
②根據(jù)∠BCF=ACE-ACB,求出∠ACE,∠ACB即可.
2)結(jié)論:AF=EF+CF.如圖,作∠FCG=60°AD于點(diǎn)G,連接BF.證明ACG≌△BCF即可解決問題.

1)①∵點(diǎn)B關(guān)于射線AD的對(duì)稱點(diǎn)為E

AE=AB

∵△ABC為等邊三角形,

AB=AC

AE=AC

故答案為:AE=AC

②解:∵∠BAF=EAF,ABC是等邊三角形,

AB=AC,∠BAC=ACB=60°,

∴∠EAC=60°AE=AC,

∴∠ACE= [180°﹣(60°]=60°+α,∴∠BCF=ACE﹣∠ACB=60°+α60°=α

2)結(jié)論:AF=EF+CF

證明:如圖,作∠FCG=60°AD于點(diǎn)G,連接BF

∵∠BAF=BCF,∠ADB=CDF,

∴∠ABC=AFC=60°,

∴△FCG是等邊三角形,

GF=FC

∵△ABC是等邊三角形,

BC=AC,∠ACB=60°

∴∠ACG=BCF,

ACGBCF中,

∴△ACG≌△BCFSAS),

AG=BF

∵點(diǎn)B關(guān)于射線AD的對(duì)稱點(diǎn)為E,

BF=EF

AFAG=GF,

AF=EF+CF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象相交于點(diǎn).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)若定義橫、縱坐標(biāo)均為整數(shù)的點(diǎn)叫做好點(diǎn),則圖中陰影部分區(qū)域內(nèi)(不含邊界)好點(diǎn)的個(gè)數(shù)為________

(3)請(qǐng)根據(jù)圖象直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形OBCD中,OB1,相鄰兩內(nèi)角之比為12,將菱形OBCD繞頂點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到菱形OBCD視為一次旋轉(zhuǎn),則菱形旋轉(zhuǎn)45次后點(diǎn)C的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直立于地面上的電線桿AB,在陽(yáng)光下落在水平地面和坡面上的影子分別是BC、CD,測(cè)得BC=6米,CD=4米,BCD=150°,在D處測(cè)得電線桿頂端A的仰角為30°,試求電線桿的高度(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形臺(tái)球桌面ABCD上有兩個(gè)球P,QPQAB,球P連續(xù)撞擊臺(tái)球桌邊ABBC反射后,撞到球Q.已知點(diǎn)MN是球在AB,BC邊的撞擊點(diǎn),PQ=4,∠MPQ=30,且點(diǎn)PAB邊的距離為3,則四邊形PMNQ的周長(zhǎng)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,已知 A(4,0)、B(1,3), 過的直線是繞著OAB的頂點(diǎn)A旋轉(zhuǎn),與y軸相交于點(diǎn)P,探究解決下列問題:

1)如圖1所示,當(dāng)直線旋轉(zhuǎn)到與邊OB相交時(shí),試用無(wú)刻度的直尺和圓規(guī)確定點(diǎn)P的位置,使頂點(diǎn)OB到直線的距離之和最大,(保留作圖痕跡);

2)當(dāng)直線旋轉(zhuǎn)到與y軸的負(fù)半軸相交時(shí),使頂點(diǎn)OB到直線的距離之和最大,請(qǐng)直接寫出點(diǎn)P的坐標(biāo)是 .(可在圖2中分析)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線G有最低點(diǎn)。

1)求二次函數(shù)的最小值(用含m的式子表示);

2)將拋物線G向右平移m個(gè)單位得到拋物線G1。經(jīng)過探究發(fā)現(xiàn),隨著m的變化,拋物線G1頂點(diǎn)的縱坐標(biāo)y與橫坐標(biāo)x之間存在一個(gè)函數(shù)關(guān)系,求這個(gè)函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

3)記(2)所求的函數(shù)為H,拋物線G與函數(shù)H的圖像交于點(diǎn)P,結(jié)合圖像,求點(diǎn)P的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線y=x+2經(jīng)過點(diǎn)Am,-2),將點(diǎn)A向右平移7個(gè)單位長(zhǎng)度,得到點(diǎn)B,拋物線的頂點(diǎn)為C.

1)求m的值和點(diǎn)B的坐標(biāo);

2)求點(diǎn)C的坐標(biāo)(用含n的代數(shù)式表示);

3)若拋物線與線段AB只有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某年五月,我國(guó)南方某省AB兩市遭受嚴(yán)重洪澇災(zāi)害,鄰近縣市C、D決定調(diào)運(yùn)物資支援A、B兩市災(zāi)區(qū).已知C市有救災(zāi)物資240噸,D市有救災(zāi)物資260噸,現(xiàn)將這些救災(zāi)物資全部調(diào)往A、B兩市,A市需要的物資比B市需要的物資少100噸.已知從C市運(yùn)往AB兩市的費(fèi)用分別為每噸20元和25元,從D市運(yùn)往往A、B兩市的費(fèi)用分別為每噸15元和30元,設(shè)從D市運(yùn)往B市的救災(zāi)物資為x噸.

1A、B兩市各需救災(zāi)物資多少噸?

2)設(shè)C、D兩市的總運(yùn)費(fèi)為w元,求wx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

3)經(jīng)過搶修,從D市到B市的路況得到了改善,縮短了運(yùn)輸時(shí)間,運(yùn)費(fèi)每噸減少m元(m0),其余路線運(yùn)費(fèi)不變.若C、D兩市的總運(yùn)費(fèi)的最小值不小于10320元,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案