【題目】如圖,線(xiàn)段AB經(jīng)過(guò)圓心O,交⊙O于點(diǎn)A、C,點(diǎn)D為⊙O上一點(diǎn),連結(jié)ADOD、BD,∠A=∠B30°.

1)求證:BD是⊙O的切線(xiàn).

2)若OA5,求OA、ODAD圍成的扇形的面積.

【答案】1)見(jiàn)解析;(2OA、ODAD圍成的扇形的面積為

【解析】

1)求出∠A=∠ADO30°,求出∠DOB60°,求出∠ODB90°,根據(jù)切線(xiàn)的判定推出即可;

2)根據(jù)扇形的面積公式即可求出答案.

解:(1)證明:∵∠ADO=∠BAD30°,

∴∠DOB60°

∵∠ABD30°,

∴∠ODB90°

ODBD

∵點(diǎn)D為⊙O上一點(diǎn),

BD是⊙O的切線(xiàn).

2)解:∵∠DOB60°,

∴∠AOD120°.

OA5

OA、ODAD圍成的扇形的面積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)E的中點(diǎn),連接AF交過(guò)E的切線(xiàn)于點(diǎn)DAB的延長(zhǎng)線(xiàn)交該切線(xiàn)于點(diǎn)C,若∠C30°,⊙O的半徑是2,則圖形中陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)經(jīng)過(guò)點(diǎn)A-3,0)、B(2,0)、C(04).

(1)求拋物線(xiàn)的解析式;

(2)y軸上找一點(diǎn)D,使得△BOD與△AOC相似,請(qǐng)直接寫(xiě)出符合條件的點(diǎn)D的坐標(biāo);

(3)AC與拋物線(xiàn)的對(duì)稱(chēng)軸交于點(diǎn)E,以A為圓心,AE長(zhǎng)為半徑作圓,⊙Ay軸的位置關(guān)系如何?請(qǐng)說(shuō)明理由.

(4)過(guò)點(diǎn)E作⊙A的切線(xiàn)EG,交x軸于點(diǎn)G,請(qǐng)求出直線(xiàn)EG的解析式及G點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2+bx﹣3a≠0)與x軸交于點(diǎn)A﹣2,0)、B4,0)兩點(diǎn),與y軸交于點(diǎn)C

1)求拋物線(xiàn)的解析式;

2)點(diǎn)PA點(diǎn)出發(fā),在線(xiàn)段AB上以每秒3個(gè)單位長(zhǎng)度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)QB點(diǎn)出發(fā),在線(xiàn)段BC上以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),當(dāng)△PBQ存在時(shí),求運(yùn)動(dòng)多少秒使△PBQ的面積最大,最大面積是多少?

3)當(dāng)△PBQ的面積最大時(shí),在BC下方的拋物線(xiàn)上存在點(diǎn)K,使SCBKSPBQ=52,求K點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形ABCD的一條邊AD4,將矩形ABCD折疊,使得頂點(diǎn)B落在邊上的P點(diǎn)處.

1)如圖1,已知折痕與邊BC交于點(diǎn)O,連結(jié)AP、OPOA.求證:OCP∽△PDA;

2)若OCPPDA的面積比為14,求邊AB的長(zhǎng);

3)如圖2,在(1)(2)的條件下,擦去折痕AO線(xiàn)段OP,連結(jié)BP,動(dòng)點(diǎn)M在線(xiàn)段AP上(點(diǎn)M與點(diǎn)P、A不重合),動(dòng)點(diǎn)N在線(xiàn)段AB的延長(zhǎng)線(xiàn)上,且BNPM,連結(jié)MNPB于點(diǎn)F,作MEBP于點(diǎn)E.試問(wèn)當(dāng)點(diǎn)MN在移動(dòng)過(guò)程中,線(xiàn)段EF的長(zhǎng)度是否發(fā)生變化?若變化,說(shuō)明理由;若不變,求出線(xiàn)段EF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn)Px,y)和Qx,y′),給出如下定義:如果y′=,那么稱(chēng)點(diǎn)Q為點(diǎn)P的“伴隨點(diǎn)”.

例如:點(diǎn)(56)的“伴隨點(diǎn)”為點(diǎn)(5,6);點(diǎn)(﹣5,6)的“伴隨點(diǎn)”為點(diǎn)(﹣5,﹣6).

1)直接寫(xiě)出點(diǎn)A21)的“伴隨點(diǎn)”A′的坐標(biāo).

2)點(diǎn)Bm,m+1)在函數(shù)ykx+3的圖象上,若其“伴隨點(diǎn)”B′的縱坐標(biāo)為2,求函數(shù)ykx+3的解析式.

3)點(diǎn)CD在函數(shù)y=﹣x2+4的圖象上,且點(diǎn)CD關(guān)于y軸對(duì)稱(chēng),點(diǎn)D的“伴隨點(diǎn)”為D′.若點(diǎn)C在第一象限,且CDDD′,求此時(shí)“伴隨點(diǎn)”D′的橫坐標(biāo).

4)點(diǎn)E在函數(shù)y=﹣x2+n(﹣1x2)的圖象上,若其“伴隨點(diǎn)”E′的縱坐標(biāo)y′的最大值為m1m3),直接寫(xiě)出實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫(huà)弧交AD于點(diǎn)F,再分別以點(diǎn)B. F為圓心,大于 BF的相同長(zhǎng)度為半徑畫(huà)弧,兩弧交于點(diǎn)P;連接AP并延長(zhǎng)交BC于點(diǎn)E,連接EF.若四邊形ABEF的周長(zhǎng)為16,C=60°,AG=2,則四邊形ABEF的面積是(

A.8B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點(diǎn),E、F分別是線(xiàn)段BM、CM的中點(diǎn)

(1)求證:ABM≌△DCM

(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;

(3)當(dāng)AD:AB= _時(shí),四邊形MENF是正方形(只寫(xiě)結(jié)論,不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:平行四邊形ABCD中,EAB中點(diǎn),,連E、FACG,則AGGC=______________;

查看答案和解析>>

同步練習(xí)冊(cè)答案