【題目】如圖,已知點(diǎn)O在直線AB上,將一副直角三角板的直角頂點(diǎn)放在點(diǎn)O處,其中∠OCD=60°,∠OEF=45°.邊OC、OE在直線AB上.
(1)如圖(1),若CD和EF相交于點(diǎn)G,則∠DGF的度數(shù)是______°;
(2)將圖(1)中的三角板OCD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°至圖(2)位置
①若將三角板OEF繞點(diǎn)O順時(shí)針旋轉(zhuǎn)180°,在此過程中,當(dāng)∠COE=∠EOD=∠DOF時(shí),求∠AOE的度數(shù);
②若將三角板OEF繞點(diǎn)O以每秒4°的速度順時(shí)針旋轉(zhuǎn)180°,與此同時(shí),將三角板OCD繞點(diǎn)O以每秒1°的速度順時(shí)針旋轉(zhuǎn),當(dāng)三角板OEF旋轉(zhuǎn)到終點(diǎn)位置時(shí),三角板OCD也停止旋轉(zhuǎn).設(shè)旋轉(zhuǎn)時(shí)間為t秒,當(dāng)OD⊥EF時(shí),求t的值.
【答案】(1)15;(2)①當(dāng)∠COE=∠EOD=∠DOF時(shí),∠AOE=75°;②當(dāng)OD⊥EF時(shí),t的值為25.
【解析】
(1)根據(jù)三角形外角的性質(zhì)即可得到結(jié)論;
(2)①如圖2,根據(jù)已知條件求出∠COE=∠EOD=45°,得到∠AOE=∠AOC+∠COE=30°+45°=75°,當(dāng)∠COE=∠EOD=∠DOF時(shí),求得結(jié)論;②根據(jù)垂直的定義得到OD⊥EF,得到∠OHE=90,列方程求得結(jié)論.
(1)∵∠EFO=45°,∠D=30°,
∴∠DGF=∠EFO-∠D=45°-30°=15°,
故答案為:15;
(2)①如圖2,
∵∠COE=∠EOD=∠DOF,∠COE+∠EOD=∠COD,∠COD=90°,
∴∠COE=∠EOD=45°,
∴∠AOE=∠AOC+∠COE=30°+45°=75°,
當(dāng)∠COE=∠EOD=∠DOF時(shí),∠AOE=75°;
②∵∠AOE=4t°,∠AOC=30°+t°,如圖3,
∵OD⊥EF,
∴∠OHE=90,
∵∠E=45°,∠COD=90°,
∴∠COE=45°,
∴∠AOE-∠AOC=∠COE=45°,
即4t-(30+t)=45,
∴t=25,
∴當(dāng)OD⊥EF時(shí),t的值為25.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一廣告墻PQ旁有兩根直立的木桿AB和CD , 某一時(shí)刻在太陽光下,木桿CD的影子剛好不落在廣告墻PQ上,
(1)你在圖中畫出此時(shí)的太陽光線CE及木桿AB的影子BF;
(2)若AB=6米,CD=3米 , CD到PQ的距離DQ的長為4米,求此時(shí)木桿AB的影長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,D為BC中點(diǎn),BE、CF與射線AE分別相交于點(diǎn)E、F(射線AE不經(jīng)過點(diǎn)D).
(1)如圖①,當(dāng)BE∥CF時(shí),連接ED并延長交CF于點(diǎn)H. 求證:四邊形BECH是平行四邊形;
(2)如圖②,當(dāng)BE⊥AE于點(diǎn)E,CF⊥AE于點(diǎn)F時(shí),分別取AB、AC的中點(diǎn)M、N,連接ME、MD、NF、ND. 求證:∠EMD=∠FND.
圖① 圖②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=2x+2a與y=-x+b的圖象都經(jīng)過點(diǎn)A(-2,a),且與x軸分別交于B,C兩點(diǎn),則△ABC的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小東用長為3.2m的竹竿做測(cè)量工具測(cè)量學(xué)校旗桿的高度,移動(dòng)竹竿,使竹竿、旗桿頂端的影子恰好落在地面的同一點(diǎn).此時(shí),竹竿與這一點(diǎn)相距8m,與旗桿相距22m,則旗桿的高為( 。
A.12m
B.10m
C.8m
D.7m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某檢修小組從A地出發(fā),在東西方向的公路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負(fù),一天中七次行駛,紀(jì)錄如下(單位:km)
第1次 | 第2次 | 第3次 | 第4次 | 第5次 | 第6次 | 第7次 |
﹣4 | +7 | ﹣9 | +8 | +6 | ﹣5 | ﹣2 |
則收工時(shí)距A地多遠(yuǎn)?在第幾次紀(jì)錄時(shí)距A地最遠(yuǎn)?
A. 2千米 第1次 B. 1千米 第2次
C. 2千米 第4次 D. 1千米 第5次
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的個(gè)數(shù)為( )
①﹣a一定是負(fù)數(shù);②一個(gè)有理數(shù)不是整數(shù)就是分?jǐn)?shù);③任何一個(gè)有理數(shù)的平方都是正數(shù);④倒數(shù)等于它本身的數(shù)是±1;⑤絕對(duì)值等于它本身的數(shù)是0;⑥任何一個(gè)有理數(shù)的絕對(duì)值都是正數(shù)
A. 0 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校有一個(gè)兩層樓的餐廳,甲、乙、丙三名學(xué)生各自隨機(jī)選擇其中的某個(gè)樓層的餐廳用餐,則甲、乙、丙三名學(xué)生在同一個(gè)樓層餐廳用餐的概率為()
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB=4,點(diǎn)O是線段AB上的點(diǎn),點(diǎn)C,D是線段OA,OB的中點(diǎn),小明很輕松地求得CD=2.
(1)小明在反思過程中突發(fā)奇想:若點(diǎn)O運(yùn)動(dòng)到線段AB的延長線上,則原有的結(jié)論“CD=2”是否仍然成立呢?請(qǐng)幫小明畫出圖形分析,并說明理由.
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到直線AB外時(shí),結(jié)論“CD=2”是否還成立?請(qǐng)利用刻度尺驗(yàn)證你的猜想.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com